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NEW SECTION OF PHYSICS 

 
An an attempt to substantiate and formulate the main provisions of combined physical discipline – Mechanothermodynamics. Earlier 

its principles have been based on the concept of entropy [1]. It is shown that Mechanothermodynamics has combined two sections of 

Physics – Mechanics and Thermodynamics in order not to compete with each other, as it has been traditionally, but in order to take a 

fresh look at the evolution of complex systems. Based on the analysis of more than 600 experimental results, the fundamental mech-

anothermodynamical function of limiting (critical by damage) states of metal and polymer materials was determined. 

 
ntroduction. As is known any scientific disci-

pline serves and aims at understanding and de-

scribing these or those regularities and features of certain 

phenomena, situations, events caused by the existence of 

some real or thinkable objects that manifest themselves 

their specific properties [1, 2]. Based on the considera-

tions that the study of a new object, as a rule, generates a 

new scientific discipline as applied to Mechanics, the 

hierarchy of objects can be built. Successive arrows in 

Figure 1 [1–4] shows complexity of objects studied by 

mechanics. The next new objects became multiphase – 

mechanothermodynamics system. For its study, not only 

sufficient methods of mechanics – both methods are in-

sufficient and only thermodynamics. 
 

 
 

Figure 1 – Simplified hierarchical structure of some objects  

to be studied in Mechanics: from the simple to the complex 

 
These methods and models addressing coupled problems 

of both stress-strain states and energy states of the complex 

systems working under mechanical and thermodynamic load-

ing are discussed in well-known monographs [5–8]. The con-

cepts of entropy and damage are important in order to con-

struct the the models of mechanothermodynamical system. 

Basic ideas about mechanical behavior of materials un-

der the fracture process are discussed in [9]. The work [10] 

addresses the main aspects of Damage Mechanics as the 

branch of Fracture Mechanics and some of its applications. 

Fundamentals of Physical Mesomechanics of heterogene-

ous media that develops at the boundary of Continuum Me-

chanics, Physics of Plasticity and Strength of Materials and 

studies the stressed and damaged material at linked micro-, 

meso- and macro levels are given in [11]. 

Constitutive relations for strain-induced damage in 

terms of thermodynamic consistency and also applications 

of Continuum Damage Mechanics to failures of mechanical 

and civil engineering components in ductile, creep, fatigue 

and brittle conditions due to thermomechanical loading are 

considered in [12, 13]. The related problems of constructing 

theories of vibration and plasticity for steady-state vibra-

tions in elastoplastic bodies are discussed in [14]. 

The works [15, 16] contain a concise review of basic 

continuum damage models, micromechanics of damage, 

kinetics of damage evolution and discuss the areas of fur-

ther research. General framework for the development of 

continuum damage models defned by yield and damage 

surfaces in stress space with consideration of the damage 

mechanisms (isotropic damage, cracking, etc.) which de-

grade the stiffness of the material is proposed in [17]. A 

detailed experimental and theoretical study on the stress-

based forming limit criterion during linear and complex 

strain paths is given in [18]. A thermodynamic framework 

intended for modelling both friction and non-associated 

flow for geotechnical materials is presented [19]. The pa-

pers [20, 21] are dedicated to modelling of the large strain 

elastic–plastic deformation behavior of anisotropically 

damaged ductile metals. The formulation of the elasto-

plastic-damage behavior of materials is introduced in [22] 

within a thermodynamically consistent framework that uses 

functional forms of hardening internal state variables in 

both damage and plasticity. Paper [23] proposes a damage 

theory in terms of kinematic, thermodynamic and kinetic 

coupling for polycrystalline material 

A microscopic damage model considering an ellipsoidal 

void that is able to change its shape is considered in [24] for 

mixed-hardening materials. Results of experimental analysis 

of voids behavior in model materials using X-ray tomogra-

phy are discussed in [25, 27]. Analythical and scanning elec-

tron microscopy based study of void growth and change of 

shape under large plastic deformation is presented in [28]. 

Phenomenological representation of anisotropic damage pro-

I 



 154 

gression for porous ductile metals with second phases is de-

scribed through mechanisms of void nucleation, growth and 

coalescence in [26]. An analytical and computational 

mesoscopic models for the nucleation and interaction of mi-

crocracks near a macrocrack tip based on both the theory of 

elasticity and the theory of dislocations are presented in [29]. 

The framework allowing the combination of plasticity and 

damage models of inelastic behaviour is proposed in [30]. 

In [1, 31–34], the fundamentals of Mechanothermody-

namics are given and two of its principles are formulated: 1) 

damage of all things has no conceivable boundaries, 2) effec-

tive energy fluxes (entropy) that are caused by loads of dif-

ferent nature during irreversible changes in the MTD system 

have no additivity – they interact dialectically. In [1], the 

analysis is made according to the main principles of Tribo-

Fatigue [2–4] and Thermodynamics [5] and is based on the 

concept of entropy. In this paper, the similar analysis is made 

on the basis of the energy representations of Mechanics, Tri-

bo-Fatigue, and Thermodynamics. This has made it possible 

to reveal and investigate new regularities of the behavior and 

evolution of the mechanothermodynamical system. 

Thermomechanical statement. Consider the statement 

of thermomechanical problem [5–8] needed for further de-

velopment of models of energy and entropy states mech-

anothermodynamical systems. 

Energy and entropy descriptions of continuum state of 

elementary volume dV are of the form [6, 7] 

 ,3,2,1  ,,  ivf iijij
  (1) 

where the ij are the stresses;  is the density; the fi are 

volumetric forces; the vi are the velocities. 

The law of conservation of mechanical energy for the 

continuum of the volume V, with regard to the repeated 

index summation rule is obtained by multiplying scalar 

equation (1) by the velocity vector vi: 
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The right hand-side of equation (2) is the change in the 

kinetic energy K of the continuum of volume V : 
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Based on the known transformations with regard to 

Gauss – Ostrogradsky’s the equation for mechnical energy 

of continuum [6] is derived 
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where εij is the strain rate; Π is the continuum surface; the l 

are the director cones at the continuum surface; δu/dt is the 

power of internal forces; δA/dt is the power of internal 

surfaces and volumetric forces.  

The symbol δ in expression (4) is used to underline that 

the increment in the general case cannot be an accurate 

differential.  

In the thermomechanical statement the rate of change in 

internal energy u [6] is usually given by the integral 
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0
 is the specific internal energy 

(internal energy density) of the elementary volume of the 

mass Δm. 

The rate of heat transfer to the continuum is expressed 

as follows: 
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where сi is the characteristic of the heat flux per unit area of 

continuum surface per unit time due to heat conduction; z is 

the constant of heat radiation per unit mass per unit time. 

The law of change in the energy of thermomechanical 

continuum then assumes the form 
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In (7), the transformation of surface integrals into vol-

ume integrals allows the local form of the energy equation 

to be obtained 
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If the scalar product of equation (1) and the velocity 

vector vi, is subtracted from equation (8), then the following 

form of the local energy equation will be obtained: 
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where dq is the heat flux per unit mass. 

According to expression (9), the rate of change in the 

internal energy is equal to the sum of the stress power and 

the heat flux to the continuum. 

As applied to the thermodynamic system, two 

characteristic functions of its state are defined: absolute 

temperature T and entropy S that can be interpreted as the 

characteristic of ordering (or chaotic state) of the 

thermodynamic system. Usually it is assumed that the 

entropy possesses the property of additivity, i.e., 

 .
i

iSS  (10) 

In continuum mechanics [6, 7], the specific entropy per 

unit mass is considered 

 .
V

sdVS  (11) 

The specific entropy increment ds can be due to the in-

teraction with the environment (the increment ds(e)) or in-

side the system itself (the increment ds(i)) [6, 7]: 

 .)()( ie dsdsds   (12) 

The increment ds(i) is equal to zero in reversible 

processes and is greater than zero in irreversible processes.  
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If the heat flux per unit mass is expressed through dq, 

then for reversible processes the increment will be 

 .dqTds   (13) 

According to the second law of thermodynamics, the 

rate of change in the total entriopy S of the continuum of 

the volume V cannot be smaller than the sum of the heat 

flux through the volume boundary and the entropy 

produced inside the volume by external sources (Clausius –

Duhem’s inequality) [6, 7]: 
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where e is the power of local external entropy sources per 

unit mass. The equality in formula (14) is valid for 

reversible processes and the inequality – irreversible 

processes.  

Transforming the surface integral into the volume 

integral in expression (14) can yield the relation for the rate 

of the internal entropy production per unit mass: 
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In continuum mechanics, it is assumed that the stress 

tensor can be decomposed into two parts: the conservative 

part )(C

ij  for reversible processes (elastic deformation, liquid 

pressure) and the dissipative part )(D

ij  for irreversible 

processes (plastic deformation, liquid viscous stresses): 
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The expression for the rate of change in energy (9) can 

then be presented in the following form: 
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If it is assumed that relation (13) is valid for irreversible 

processes, then the rate of the total entropy production is  
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Expression (18) for the rate of a total change of local 

entropy in the elementary volume of the continuum can be 

very conveniet in practice.  

In view of assumption (10) on the entropy additivity the 

sum in (18) can be supplemented by other terms 

considering the internal entropy production in the liquid 

(gas) volume due to different mechanisms. Similarly, for 

the continuum volume dV , for example, internal chemical 

processes can be considered [5]: 
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If dV is considered not as a finite volume but as an 

elementary volume of continuum, then changes in its specific 

energy and entropy based on (17), (19) and (20) can be written 

in the following differential form: 
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where nk is the number of mols per unit mass. 

For the continuum of the volume V , expressions (21) 

and (22) on the basis of relations (5) and (11) will assume 

the form 
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The introduction of the chemical entropy component [the 

last terms in (21)–(23)] allowed one not only to obtain a 

more full picture of the continuum state but also to describe 

self-organization processes that result in initiating stable 

structures when the heat flux to the continuum is increased. 

The above-presented known models of energy and 

entropy states of continuum (17)–(24), being rather general, 

do not nevertheless permit one to satisfactorily describe some 

processes occurring in such a continuum as a deformable 

solid. However a convenient representation of the additivity 

of energy and entropy components (11) used, for example, 

for modeling elastic deformation is not suitable for the 

description of non-linear processes. The available models do 

not also allow for the entropy growth due to damageability of 

solids as a specific characteristic of changes in the structural 

organization. According to the Tribo-Fatigue concepts [2–

32], the damageability is interpreted as any irreversible 

change in structure, continuum, shape, etc. of a deformable 

solid that leads to its limiting state. Although, for example, 

the elasticity limit is not taken into account implicitly during 

plasticity modeling, the damageability, for example, during 

mechanical or contact fatigue occurs in the conditions of 

linear elastic deformation and requires a particular approach 

for its description with regard to limiting fatigue 

characteristics of material. The above drawbacks are 

overcome in the below approach. 

Main principles. According to [2, 4, 31], the mech-

anothermodynamical (MTD) system in the general case rep-

resents the thermodynamic continuum with solids distributed 

(scattered) within it, interacting with each other and with the 

continuum. Consider its fragment of limited size 

),,( ZYX  shown in Figure 2. The continuum has a tem-
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perature   and a chemical composition Ch. Here are two 

interacting solid elements (А and В) that can move relatively 

to each other at the contact zone ),,( zyxS . Arbitrary me-

chanical loads applied to one of them (for example, to ele-

ment А) in x, y, z coordinate system are transformed into the 

internal transverse forces Qx, Qy, Qz, longitudinal forces Nx, 

Ny, Nz and also into the bending moments Мx, Мy, Мz. Ele-

ment В is pressed to element А by the loads that are trans-

formed into the distributed normal pressure ),( yxp  and the 

tangential tractions ),( yxq . The origin of the coordinates is 

placed at the point of original contact О of the two elements 

(prior to deformation). It is easy to see that the elements А 

and В together form the Tribo-Fatigue system [4] which is 

could be reduced to the friction pair [2] in the absence of 

internal forces ( 0iN , 0iQ , 0iM , i = x, y, z). Thus, 

the Tribo-Fatigue system is the friction pair in which at least 

one of the elements perceives non-contact loads and, conse-

quently, undergoes volumetric deformation. This representa-

tion of the MTD system has an advantage that the analysis of 

the states of a solid and the components of a system can 

adopt the appropriate solutions known in Mechanics of De-

formable Solid, in Contact Mechanics, in Mechanics of Tri-

bo-Fatigue systems (Tribo-Fatigue), and in Tribology. 

 

 
 

Figure 2 – Scheme of the elementary MTD system  

 
Our main task is to describe the energy state of the MTD 

system under the action of mechanical and thermodynamic 
loads with regard to the environmental influence.  

The energy state of any system is very interesting in it-

self. However, as applied to the MTD system it is very im-

portant to study its damage and, as a result, to study the 

conditions of reaching the limiting state (fatigue fracture, 

wear etc.). Special interest is the analysis of translimiting 

or supercritical conditions [2]. 
The main ideas, which are the fundamentals of the given 

theory, can be formulated with regard to [2–4] as follows. 
I Due to the fact that the elements of the MTD system 

are subject to the loads of different nature – mechanical, 
thermal and electrochemical, the traditional analysis of their 
damage and limiting state under the action only of mechan-
ical stresses or strains [35–43, etc.] can be the basis for re-
search. However it appears insufficient and, as a result, is 
ineffective. This means that there is a need to analyze MTD 
system states using more general energy concepts. 

II Considering that the damage of MTD system solids is 

determined by mechanical, thermodynamic [44–46, etc.] and 

electrochemical loads, it is needed to introduce the general-

ized representation of its complex damage that is caused by 

these loads acting at a time. Call such damage any irreversi-

ble changes in shape, size, volume, mass, composition, struc-

ture, continuity and, as a result, physical-mechanical proper-

ties of the system elements. This means the corresponding 

changes in the functions of the system as the integrity.  

III The onset and development of complex damage is 

mainly determined by means of four particular phenomena: 

mechanical fatigue, friction, wear, thermodynamic and elec-

trochemical processes. These phenomena are called particu-

lar in the sense that each of them can be realized as inde-

pendent and separate. This leads to the corresponding energy 

state and damage in terms of particular (separate) criteria. 

IV In the general case, all these particular phenomena 

and processes in the MTD system appear simultaneously 

and within one area. The states of such a system are then 

caused not by one of any mentioned phenomena but by 

their joint (collective) development and, consequently, by 

their interaction. 

V If the physical state of the MTD system is described 

by means of all input energy u , then its damage condition 

is determined only by the effective (dangerous) part 

  uueff  that is spent for generation, motion, and interaction 

of irreversible damages. 

VI The effective energy effu  at the volume strain of sol-

ids can be represented by the function of three energy com-

ponents: thermal eff

Tu , force eff

nu , and frictional effu   

  ,,, effeff

n

eff

T

eff uuuFu    (25) 

where F takes into account the irreversible kinetic interac-

tion of particular damage phenomena. The components 
effeff

n

eff

T uuu ,,  of the effective energy effu  have no property of 

additivity. 

VII The processes of electrochemical (in particular, cor-

rosion) damage of solids can be taken into consideration by 

introducing the parameter 0 ≤ Dch ≤ 1 and can be studied, for 

example, as electrochemical damage under the influence of 

temperature (DT(ch)), stress (D(ch)), and friction corrosion 

(D(ch)). So function (25) takes the form  

  .,, )()()(

eff

ch

eff

chn

eff

chT

eff uuuFu    (26) 

VIII The generalized criteria of the limiting (critical) 

state is represented by the condition when the effective en-

ergy effu  reaches its limiting value – critical quantity u0 in 

some area of limited size – in the dangerous volume of the 

MTD system. 

IX The energy u0 is considered to be a fundamental con-

stant for a given material. It shouldn’t depend on testing 

conditions, input energy types, damage mechanisms. 

X By the dangerous volume is understood the 3D area 

0VVij   of the deformable solid (V0 is its working volume) with 

the critical state of material at all its points, of which it consists. 

XI In the general case, the limiting (critical) state of the 

MDT system is reached not due to a simple growth of effec-

tive energy components and, hence, due to the accumulation 

of irreversible damages that are caused by separate actions 

(loads of different nature), but as a result of their dialectical 

interaction, whose direction is characterized by the develop-

http://www.lingvo-online.ru/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%80%d0%b0%d1%81%d0%bf%d1%80%d0%b5%d0%b4%d0%b5%d0%bb%d0%b5%d0%bd%d0%bd%d1%8b%d0%b9&translation=distributed&srcLang=ru&destLang=en
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ment of spontaneous phenomena of hardening-softening of 

materials in the given operating or testing conditions. In such 

a way, taking into consideration function (26), the hypothesis 

of the limiting (critical) state of the MTD system can be rep-

resented in the following general form  

 ,0),,,,,( 0\\)()()(   umuuu klkn

eff

chT

eff

ch

eff

ch  (27) 

where mk, k = 1, 2, …, are some characteristic properties 

(hardening-softening) of contacting materials, nlk \\   1 

are the functions (parameters) of dialectic interactions of 

effective energies (irreversible damages) that are caused by 

loads of different nature. This means that at k > 1, the 

damage increase is realized, at l < 1 – its decrease, and at 

n = 1 – its stable development.  

XII Taking into consideration Item III, from the physical 

viewpoint, hypothesis (27) should be multi-criterion, i.e., it 

should describe not only the states of the system as the integ-

rity but its separate elements in terms of different criteria of 

performance loss (wear, fatigue damage, pitting, corrosion 

damage, thermal damage, etc.). In particular cases, it is pos-

sible to reach the corresponding limiting (critical) states in 

terms of one or two, three or several criteria at a time.  

XIII Reaching the limiting state 

 0uueff   (28) 

means the full loss of the integrity of the MTD system, i.e., 

of all its functions. At the same time damageability of its 

elements  

 00 uueffeff

u   (29) 

reach the critical value 

   1,,,, \\)()()(   knlkchTchch

eff
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XIV If t = t0 is the time of origination of the system and T  

is the time of reaching the limiting state, then the failure time 

of its functions corresponds to the relative lifetime (longevity) 

1/ Tt . But the system lifetime *T  as the material object is 

longer than its lifetime as the functional integrity (  TT* ) 

since at the time moment Tt  the process of degradation – 

disintegration is realized by forming a great number of re-

mains, pieces, fragments, etc. This process develops under the 

influence of not only possible mechanical loads but mainly of 

the environment – up to the system death as the material ob-

ject at the time moment t = T*. The system death means its 

complete disintegration into an infinitely large number of ulti-

mately small particles (for example, atoms). The translimiting 

existence of the system as a gradually disintegrating material 

object can then be described by the following conditions  

 eff

u , (31) 

 0d , (32) 

where dψ is the average size of disintegrating particles and 

the natural relation )(  deff

u  should exist between   and 

dψ. Then the condition for the system death is  

 1* Tt . (33) 

XV The particles of the “old system” disintegration are 

not destructed but are spent for the formation and growth of 

a number of "new systems". This is the essence of the MTD 

system evolution hysteresis. 

Energy theory of damage and limiting states. First 

specify function (25). 

To determine the effective energy, consider the work of 

internal forces in the elementary volume dV of Tribo-Fatigue 

systems (А, В in Figure 2). In the general case, the differential 

of the work of the internal forces and the temperature dT can 

be written with regard to the rule of disclosing the biscalar 

product of the stress and strain tensors  and : 
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(34)

 

here k is the Boltzmann constant. 

We proceed from the idea that in the general case, accord-

ing to [2, 4], the main role in forming wear-fatigue damage is 

played by the normal and shear stresses that cause the pro-

cesses of shear (due to friction) and tear (due to tension-

compression).  

In this case, it is reasonable to divide the tensor T into two 

parts: T is the tensor of friction-shear stresses, or, briefly, the 

shear tensor and Tσ is the tensor of normal stresses (tension-

compression), or, briefly, the tear tensor. So in (28), the tear 

part Tσ and shear part T of the tensor T will be set as: 
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  

 

(35)

 

According to Items III and IV, the tensors T and E 

should be represented as follows: 

 

      
      

,

,

, ,

, .

V W V W

ij ij ij ij ij

V W V W

ij ij ij ij ij

      

      
 (36) 

Here the stress and strain tensors with the superscript V 

are caused by the action of volume loads (the general cases 

of 3D bending, torsion, tension-compression) and those 

with the superscript W – by the contact interaction of the 

system elements. Expression (35) with regard to (36) can be 

given as follows:  

          

       

, , , , ,

, , , ,

.

V W V W V W V W V W

ij ij n ij

V W V W V W V W

n ij ij

n T

du d kdT d

kdT d d kdT

du du du

 

  



          

           

  

 

(37)

 

In the case of the linear relationship between the stress-

es and strains, expression (36) will assume the form 
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(39)

 

and (37) will be as follows 

         

              

   

   

   

       

       

       

1 1

2 2

1

2

0 0

0 0

0 01
 

2 0

0

0

V W V W

ij ij ij ij ij ij

V W V W V W

n n ij ij

V W

xx xx

V W

yy yy

V W

zz zz

V W V W

xy xy xz xz

V W V W

yx yx yz yz

V W V W

zx zx zy zy

du u kT

kT

kT



  



             

             
 

 

   
 
    
 
   
 


     

     

    


 
 
 
 
 

 
 
 
 
 
  

 

           

           

           

.























 kT
W

zz

V

zz

W

zy

V

zy

W

zx

V

zx

W

yz

V

yz

W

yy

V

yy

W

yx

V

yx

W

xz

V

xz

W

xy

V

xy

W

xx

V

xx

 (40) 

From (40) it is seen that the tear part σn of the tensor σ is 
the sum of the tear parts of the tensors at the volume strain 

 V

n  and the surface load (friction)  W

n , whereas the shear 

part σ is the sum of the shear parts  V

  and  W

 . This 

means the vital difference of the generalized approach to the 
construction of the criterion for the limiting state of the 
MTD system.  

From total energy (40), its effective part is separated ac-
cording to Items V and VIII with regard to [2, 3]. To do 
this, introduce the coefficients of appropriate dimensions 

An(V), A(V) and AT(V) that determine the fraction of the 
absorbed energy  
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 (41) 

or 
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 (42) 

where М\T(V) and \(V) are the functions of interaction 

between energies of different nature. The subscript \n 

means that the function  describes the interaction between 

the shear () and tear () components of the effective ener-

gy, and the subscript М\T means that the function  de-
scribes the interaction between the mechanical (М) and 
thermal (Т) parts of the effective energy. That fact that the 
coefficients А can be, generally speaking, different for dif-
ferent points of the volume V, enables one to take into ac-
count the inhomogeneity of environment. 

Taking into consideration (42), criteria (27) can be 

specified with no regard to the environmental influence: 
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In the case of the linear relationship between the stress-

es and strains, expressions (41) and (42) will be as follows:  
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or 
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(45)

 

With regard to expression (36), criterion (43) can be 

represented as follows:  
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When the time effects should be taken into considera-

tion, criterion (46) will assume the form: 
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Thus, expression (45) is the concretization of function 

(25) and formula (46) is the concretization of criterion (27) 

for that case when the environmental influence is not taken 

into account. 

Criterion (27) in the form of (46) and (47) says: when 

the sum of interacting effective energy components caused 

by the action of force, frictional, and thermal (thermody-

namic) loads reach the critical (limiting) quantity 0u , the 

limiting (or critical) state of the MTD system (of both sepa-

rate elements of the system and the system as the integrity) 

is realized. Physically, this state is determined by many and 

different damages. 

The fundamental character of the parameter u0 has been 

mentioned above. According to [47–59], the parameter u0 

will be interpreted as the initial activation energy of the 

disintegration process. It is shown that the quantity u0 

approximately corresponds both to the sublimation heat for 

metals and crystals with ionic bonds and to the activation 

energy of thermal destruction for polymers: 

 
.0 Tuu 
 

On the other hand, the quantity u0 is determined as the 

activation energy for mechanical fracture: 

 .0 Muu   
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In such a way, the energy u0 can be considered to be the 

material constant: 

 .const0  TM uuu  (48) 

Taking into consideration the physical-mechanical and 

thermodynamic representations of the processes of damage 

and fracture [48, 49, 51], write down (48) in the following 

form 
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k
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E
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
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


  (49) 

where sk is the reduction coefficient, th is the theoretical 

strength, E is the elasticity modulus, Ca is the atom heat 

capacity, V is the thermal expansion of the volume, k is the 

Boltzmann constant, TS is the melting point, D is the Debye 

temperature, h is the Planck constant. According to (49), it 

can be taken approximately [48] 

 ,*0

V

aC
u


  (50) 

where *  0.6 is the limiting strain of the interatomic bond. 

Calculations according to (50) are not difficult. Methods of 

experimental determination of the quantity 0u  have also 

been developed [49]. 

From equality (49) it follows that u0 is the activation ener-

gy of a given material, which is by the order of magnitude 

equal to 1–10 eV per one particle or molecule (10
2
–10

3
 

kJ/mol), i.e., the value that is close to the energy of interatomic 

bond rupture in the solid [52]. Its level doesn’t depend on how 

the rupture is reached – mechanically, thermally or by their 

simultaneous action. In [49], it is possible to find the tables 

containing the u0 values for different materials. 

From (49) it is possible to find the thermomechanical 

constant of the material [2] 
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The constant  characterizes the strength loss per 1 K. 

Criterion (46) is written in the absolute values of physi-

cal parameters – the values of the effective and critical en-

ergy components. This criterion can be easily made dimen-

sionless by diving it by the quantity 0u . Then it can be 

represented in terms of irreversible (effective) damage 
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It is clear that the local (at the point) energy measure of 

damage 
eff

u  is within the range  
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or in detailed form 
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According to (54), it is also possible to determine par-

ticular energy measures of damage  

 
 

1
,

0
0

),(),(





u

u WV

n

WV

n

eff

neff

n , (55) 

 
 

1
,

0
0

),(),(




 


u

u WVWVeff
eff , (56) 

 10
0
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u

u eff

Teff

T , (57) 

due to the effective energies of different nature that are de-

termined by the force (the subscript n ), frictional (the 

subscript  ), and thermodynamic (the subscript T) loads, 

respectively. Now criterion (52) can be written in dimen-

sionless form 

    .1\\   ТМ

eff

Tn

effeff

n

eff
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According to (58), the limiting state of the MTD system is 

reached when the sum of interacting damages ( 10  ) at 

mechanical and thermodynamic loads is equal to 1. Criterion 

(46) in form (58) is convenient because all damage measures 

are dimensionless and are within the same range 10  . 

Since numerous and infinite actions, as well as the interac-

tion effects of physical damages of many types (dislocations, 

vacancies, non-elastic deformations, etc.) cannot be described 

and predicted exactly, when analyzing the MTD system, one 

introduces the concept of the interaction of dangerous volumes 

[2] that contain a real complex of damages (defects generated 

by the action of the corresponding fields of stresses (strains)). 

According to the statistical model of the deformable solid with 

the dangerous volume [53], such a volume should depend on 

the geometric parameters of the solid responsible for its work-

ing volume 0V , on the distribution function parameters 

)( 1p  and )(p  of the durability limit 1  and the effective 

stresses   considering both the effective stress probabilities Р 

and 0  and gradients G : 

  VVP PVGppFV   ,,,,),(),( 001 . (59) 

Here V  describes how the limiting durability is influ-

enced by the body shape and the scheme of body loading 

during fatigue tests.  

Thus, the dangerous volume can serve as the equivalent 

of the complex of damages, as its value is proportional, in 

particular to the level of effective stresses and, hence, to the 

number (concentration) of defects (damages). 

The boundary between the volumes of dangerous and 

safe, as it follows from expression (59), is generally blurred 

and probabilistic in nature. As the damage probability Р of 

the solid increases, the dangerous volume 
PV  is growing. 

At a given value of Р the volume can vary depending on the 

confidence probability 0 . It means that at Р = const 

 
maxmin 

 PPP VVV , (60) 
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if max0min  . Here maxmin,   form the permissible 

range. If it is accepted that 0  = const, then the dangerous 

volume will have a single value associated with the damage 

probability Р. 

Scattered damage within the dangerous volume is 

characteristic not only for the so-called smooth bodies but also 

for the elements with the structural stress concentrators [53]. 

Figure 3 demonstrates several microcracks on the sharp cut 

(rounding radius r = 0.5 mm, the theoretical stress 

concentration factor n  = 8 in Figure 3, а) and on the flat cut 

(r = 2 mm, n  = 2.55 in Figure 3, b) and also two fatigue 

cracks at a distance of 25 mm from each other at a fillet con-

nection from the crankshaft journal to its web (r = 18 mm, 

n = 3.2 in Figure 3, c); the crankshaft journal diameter is 360 mm. 

 

 
 

Figure 3 – Fatigue microcracks in the zones of stress 

concentrators (L. А. Sosnovskiy) 

 

Thus, if in the uniaxial stress state, the stress distribu-

tion  (x, y, z) in x, y, z coordinates is known, then the 

dangerous volume should be calculated by the formula  

 


 

min1),,( zyx

P dxdydzV , (61) 

where min1  being the lower boundary of the range of the 

durability limit 1  statistical distribution is such that if 

min11   , then P = 0. 

From expression (61) it follows that the generalized 

condition for fatigue fracture is of the form  

 0PV  (62) 

with some probability P under the confidence probability 0 . 

If 

 0PV , (63) 

then the fatigue damage cannot occur physically (because 

in this case, min1 ); hence, (63) is the generalized con-

dition of non-fracture.  

The methods for calculation of dangerous volumes ijV  

for friction pairs and Tribo-Fatigue systems are developed 

similar to (59)  
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and outlined in [4, 54–56]. Here ),(

lim

WV  is the limiting stress 

based on the assigned criterion of damage and fracture.  

Further, the following dimensionless characteristics of 

damage can be introduced: integral energy damage within 

the dangerous volume 
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and the average energy damage (at each point of the dan-

gerous volume) 
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The accumulation of energy damage in time within the 

dangerous volume is described by the formulas  
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Having used (63)–(68), the MTD system damage can be 

described and analyzed using the most general representa-

tions – the energy concepts with regard to the influence of 

numerous and different factors taken into account by (59), 

including the scale effect, i.e., the changes in the size and 

shape (mass) of system elements. 

According to [2, 57], the function nlk //  for damage in-

teractions in the MTD system is determined by the parame-

ters   of the effective energy ratio: 

   \\\\\\ , nTMlknlkn 1, (69) 

 ., \\
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T

eff

MTM

eff

n

eff

n uuuu    (70) 

The quantities   calculated by (69) describe the influ-

ence of the load parameter ratio on the character and direc-

tion of interaction of irreversible damages [2–4]. If  >1, 

then the system is self-softening because at the balance of 

hardening-softening phenomena, softening processes are 

dominant. If  < 1, the system is self-hardening, because at 

the balance of hardening-softening phenomena, hardening 

processes are dominant. At  = 1, the system is stable – the 

spontaneous hardening-softening phenomena are at bal-

ance in it. The general analysis of damage interactions in 

the MTD systems will be given on account of its fundamen-

tal importance in a separate paper.  

After criterion (27) has been basically formalized, the 

action of electrochemical loads (damages) should be taken 
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into consideration according to Item VII. It should be said 

at once that it is difficult to do in the strict mechanothermo-

dynamical statement: electrochemical reactions are very 

diverse and complex, when the environment interacts with a 

deformable solid body, and are insufficiently studied. 

That’s why, the approach proposed in [2, 3] is adopted: the 

simplification is introduced, according to which the damage 

of solids in the environment is determined by corrosion-

electrochemical processes. In addition, the hypothesis is put 

forward, following to which the effective energy of corro-

sion-electrochemical damage is proportional to the square 

of the corrosion speed, i.e. 

 eff

chu  ~ 2

chv . (71) 

If according to Item VII, 10  chD  is the parameter of 

corrosion-electrochemical damage of the body, then based 

on [2, 4, 57], criterion (26) with regard to its shape will be 

as follows: 
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where  
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where vch is the corrosion speed in this environment, vch(T), 

vch(), vch() is the corrosion speed in the same environment un-

der thermal, force, and friction actions, respectively; be are the 

coefficients responsible for corrosive erosion processes; )(Vm  

are the parameters responsible for the electrochemical activity 

of materials at force (the subscript  ), friction (the subscript 

 ), and thermodynamic (the subscript T) loads, wherein 

chV Am /2)(   and the parameter chA 1. 

In [59], other methods for assessment of the parameter 

chD .can be found. 

As seen, equation (72) is the specification of criterion (27). 

According to this criterion, the limiting state of the MTD sys-

tem is reached when the sum of dialectically interacting irre-

versible damages at force, friction, and thermodynamic loads 

(including electrochemical damage when acted upon by stress, 

friction, temperature) becomes equal to unity. 

Further, consider the particular case when in (46) it is 

assumed that A(V) = A = const, A(V) = A = const, 

AT(V) = AT = const, A\(V) = A\ = const, AM\T(V) = AM\T = const. 
Firstly, the stress state is caused by volume deformation, 

for which all components of the stress tensor, except for one 

component  (one-dimensional tension-compression, pure 
bending), can be neglected. Secondly, the stress state is 
caused by surface friction, for which all components of the 

stress tensor, except for one component w , can be neglect-

ed. Then (40) assumes the following form: 
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or in accordance with (72)  
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Thus, equation (77) is the simplest form of the energy 
criterion of the limiting state that is nevertheless of great 
practical importance [2].  

If there is no electrochemical influence of the environ-

ment ( chD = 0), then  
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  1. (78) 

Equation (78) is the simplest form of the energy criteri-
on of the limiting state, which, nevertheless, is of great 
practical importance [2, 57, 59]. It serves particularly for 
the development of methods of assessing the parameters 

 aaaT ,, . In fact, at 1\τ\  nTM , the boundary condi-

tions are the following:  
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where dd  ,  are the force and friction limiting stresses as 

T  0. These are called the limits of (mechanical) destruc-

tion, Td is the destruction temperature (when   = 0, w = 0) 

or the thermal destruction limit.  

The effective (“dangerous”) part of total energy of strain 

can also be determined from the following physical consid-

erations. It shall be assumed that the strain energy flux u 

generated in the material sample during its cyclic strain 

( t sinmax ) in the homogeneous (linear) stress state is 

to a certain extent similar to the light flux. In fact, it is con-

tinuously excited when the loading cycle is repeated with 

the speed  /1 . This enables one to consider it as a 

wave (with the length λ). Some part of the energy u gener-

ated in such a way can be absorbed by material atoms and 

structural formations, followed by damage of material. De-

note the absorbed part of the energy by ueff. Then the gener-

ated energy u is equal to: 
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 cons

eff uuu  , (80) 

where consu  is the non-absorbed part (it is called the con-

servative part) of the generated energy u. 

If the analogy of light and energy strain is justified, then 

the strain absorption law may be similar to Bouguer’s light 

absorption law. Consequently, the equation relating the en-

ergy ucons passed through the material strain volume V and 

the generated energy u is of the form:  

  Vuucons  exp , (81) 

or, in accordance with Lambert, in differential form: 

 V
u

du
 . (82) 

Here as in Bourguer – Lambert’s equation, the coeffi-

cient χε independent of u is the energy absorption parameter.  

Taking into account (81) into (80), the strain energy ab-

sorption law is obtained:  

   Vuueff

 exp1 , (83) 

and hence if u = 0 or V = 0 then ueff = 0. If V   it appears 

that according to (81) ucons = u, i.e., all input energy is dis-

sipated within such a volume.  

From the physical point of view, the strain energy ab-

sorption process is caused by many phenomena: 

 transition of electrons in absorbing atoms from lower 

to higher energy levels (quantum theory); 

 generation and development of dislocation structures 

(dislocation theory); 

 emergence of II and III order residual strains (stresses) 

(elasticity theory); 

 formation and development of any imperfections (de-

fects) of material composition and structure – point, planar 

and spatial (physical materials science); 

 hardening-softening phenomena (including strain ag-

ing) developing in time (fatigue theory); 

 changes in (internal) Tribo-Fatigue entropy (wear-

fatigue damage mechanics [2]).  

It should be noted that approach (83) can also be ex-

tended to the case of friction, since any indenter drives a 

strain wave upstream in the thin surface layer of the solid to 

which indenter is pressed to. Energy absorption parameter 

in this case will be   where the subscript  denotes the 

shear strain. Similarly, heat absorption in the deformable 

solid body can also be considered. Finally, the problem of 

strain energy absorption in the non-uniform (including 

complex) stress state can be easily solved by putting the 

dangerous volume  PVV  into (81)–(83). 

It should be noted that although criterion (78) is special, 

it is fundamental and general in nature. Its general nature is 

caused by the fact that in this case, all four particular phe-

nomena responsible for the MTD system state (in the 

statement simplified in terms of the stress-strain state) are 

taken into account (in accordance with Item III). Its funda-

mental nature is that here, as in complete solution (46), 

τ\n  takes into account the interaction of effective mechani-

cal energy components caused by friction w and normal  

stresses, whereas T\M  takes into account the interaction of 

the thermal and mechanical components of the effective 

energy. The effective energy thermal component is deter-

mined by the variations of the total temperature T = T2 – T1 

in the bodies contact zone caused by all heat sources, in-

cluding the heat released during mechanical (spatial and 

surface) strain, structural changes, etc. 

Mechanothermodynamical states. Within the framework 

of mechanothermodynamics a special approach is being 

developed to assess the entropy in terms of a generalized 

energy state. Following this approach and formula (77), out of 

the total energy (specific) due to some particular loads (force, 

temperature, etc.), its effective part directly spent for the 

damage production is defined by the experimentally found 

coefficients Al in formulas (41), (42), (77) [2–32]  

 ,ll

eff

l uAu   (84) 

where the ul are the specific internal energies at tear (un), 

shear (u), thermal action (uT). 

The total specific energy of an elementary volume and a 

rate of its change are then given as 

   ;1 
l
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lll uuAu  (85) 
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Moreover, the Λ-functions are used to take into 

consideration a complex (nonadditive) character of 

interactions between effective energies of different nature 

expressed by formula (42). This allows the total effective 

energy of the system to be assessed:  
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(87)

 

where the  are the possible combinations of interaction of 

effective energies (irreversible damages). 

The specific feature of Λ-functions is such that 

 eff
u   ,

eff
lu  (88) 

and, hence,  

 eff
u   u . (89) 

Thus, using coefficients Al and Λ-functions it is possible 

to assess energy interaction due to different-nature loads. 

Such interaction can cause both a sharp growth and a 

substantial decrease of effective energy, resulting in 

damages and limiting states, as compared to the one 

calculated by the ordinary additiity model of type (17): 

 . lluAu  (90) 

The total effective energy of volume V and its accumulation 

in time with regard to formula (87) are of the form  

    
V

effeff dVVuu  (91) 

and 

     ., dtdVtVutu
t V

effeff

     (92) 
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The principal moment of the mechanothermodynamical 

model is the account of the limiting state (limits of plasticity, 

strength, fatigue, etc.) according to Item XIII (see section 3) 

 ,0uueff   (93) 

where u0 is the limiting density of the internal energy 

interpreted as the initial activation energy of the 

disintegration process. 

A relationship between the current state (mechanical, 

thermomechanical, energy) of an elementary volume of a 

solid (medium) and its limiting state enables one to 

construct the parameter of local energy damageability: 

dimensionless  

 
0u

u eff
eff

u
  (94) 

or dimensional 

 .0* uueffeff

u    (95) 

Local energy damageability (94) or (95) is most general 

out of the damageability parameters constructed in terms of 

different mechanical (thermomechanical) states φ [2–32]: 

 lim)(*/ qqq  , (96) 

where φ = σ, ε, u; the σ are the stresses; the ε are the 

strains; u is the density of internal energy; the lim)(*
q  are 

the limiting values of the state φ int,,,,,,,,{  nSiijeqvq D

ij  

},,, eff

uu

n

uu  ; eqv is the equivalent mechanical state; the ij are 

the components of the tensor φ; the i are the main 

components of the tensor φ; S and D
ij  are the sphere and 

deviator parts of the tensor φ; n and τ are the normal and 

tangential components of the tensor φ; int is the intensity φ; 

u is the specific potential strain energy (internal energy 

density); the indices at u mean: n
u  and 

u  are the specific 

potential strain energy at tension-compression and shear; 
eff
u  is the effective specific potential strain energy. 

Integral damageability measures can be built on the 

basis of local measures (96) with the use of the model of a 

deformable solid with a dangerous volume (64)–(68) [53].  

By the dangerous volume is understood the spatial 

region of a loaded solid, at each point of which the value of 

local damageability is smaller than the limiting one [2–32]: 

  ,,/ lim)(*

kqqq VdVdVV   (97) 

or 

  kqq VdVdVV  ,1/ .  

Dangerous volumes are calculated by the following 

general formula: 
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The integral condition of damageability of a solid or a 

system can be written in the form 

 10
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V

Vq

q
, (99) 

where V0 is the working volume of the solid. 

To analyze at a time dangerous volumes local 

damageability distributed within them, the function of 

damageability of unit volume is introduced 

   .dVVd qq   (100) 

The function of damageability of the entire volume V 

will then be as 
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The simplest functions of damageability accumulation 

in time for unit volume and the entire volume will be of the 

following form, respectively 
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The indices of volume-mean damageability  
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and its accumulation in time can be used 
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The analysis of formulas (94), (100), (102) comes to the 

conclusion that conceptually, they are related to the concept 

of entropy as a difference (or relations) between two states 

(configurations) of a system, the degree of its organization 

(chaotic state). As applied to damageability, such states are 

current and limiting.  

Now using local energy damageability (94), construct 

specific (per unit mass) Tribo-Fatigue entropy (up to a constant): 
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or 
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where A  is the dimensional parameter (J∙mol–1∙K–1). 

On the basis of the expressions for entropy (18), аs well 

as of formulas (85), (86) the local entropy and the rate of its 

change within an elementary volume will be 
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and 
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From formulas (108) and (109), it is seen that unlike the 

thermomechanical model, the state indices of the 

mechanothermodynamical system u and s are not 



 164 

equivalent. This is due to the fact that the calculation of the 

Tribo-Fatigue entropy sTF by formula (106) is supplemented 

by the limiting state in the form of the limiting density of 

the internal energy u0. 

The Tribo-Fatigue entropy STF is calculated not within 

the entire volume V, but only within its damageable part, 

i.e., within the energy effective dangerous volume :eff

uV  

  k

effeff

u VdVuudVV   ,/ 0 . (110) 

On the basis of formulas (11), (106) and (110), the 

Tribo-Fatigue entropy of volume V will be 
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and its accumulation will be 
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where  
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The principal feaure of Tribo-Fatigue total STF and 

specific sTF entropies should be emphasized. They allow 

the difference between two states to be assesses not only 

quantitatively (as thermomechanical entropy), but also 

qualitatively, as the value of the limiting density of the 

internal energy u0 is explicitly introduced into the calculation 

of the specific entropy sTF. Thus, sTF and STF allow one to 

answer the question how much the current state of a solid or 

a system is dangerous in comparison with limiting states.  

The total entropy and the rate of its change for a solid 

of a system with regard to (111) and (113) assume the form 
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Based on formulas (106)–(116), the function of 

accumulation of total entropy in time can be built: 
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In this respect, bearing in mind the limiting states of a solid 

or a system, models (115)–(117) permit one to answer the 

question whether the current state is the point of a qualitative 

jump in the system, i.e., whether the current state is close to the 

limiting one. A similar (dialectical as a matter of fact) 

qualitative transition differs, for example, from the bifurcation 

point having the uncertainty in a further development of events 

and the possibility to predict the system behavior after a 

transition on the basis of the analysis of sTF and STF. Particular 

limiting states (limit of strength, mechanical or contact fatigue, 

etc.) enable one to predict the situation after transition the given 

point: principal changes in the system properties and behavior or 

the formation of a new system based on the previous one.  

As an example, there can be non-linear deformation or 

generation of microcracks in the solid (or the system) that cause 

the changes in its strength and fatigue properties, and, hence, to 

its response to loads. In turn, formed macrocracks lead to local 

continuum violation – formation of new free surfaces (possibly, 

of new solids – destruction products), i.e. a new system. 

It should be noted that models (115)–(117) were built 

using a traditional concept of entropy additivity (10) 

although with regard to substational improvements. These 

models also contain reversible processes described by the 

entropy components sl not yielding primary damages and, 

hence, the limiting states – the points of a qualitative 

change of the system. 

It is therefore more advisable for a qualitative and 

quantitative analysis of evolution of systems (whose states 

are tradiationally defined as bifurcation branches) that the 

entropy state should be determined using the 

mechanothermodynamical model of the solid using only 

Tribo-Fatigue entropy. In this case, formulas (111)–(113) 

for entropy and its accumulation will be of the form 
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To identify the points of qualitative change in the 

limiting states of solids (systems), the indices of relative 

integral entropy and its accumulation built on the basis of 

the concept of integral condition of damageability of a solid 

(99) can be used: 

   ;
1

0),(00






utVu

TF
TF

S
eff

dVVs
VV

S
 (120) 

  
 

  .
1

0),(00

dtdVVs
VV

tS
t

t utVu

TF
TF

S
eff

 


  (121) 



 165 

The indices STF, STF(t), ωS, ωS(t) can grow infinitely, 

allowing not only the limiting states of type (93), but also 

different transmitting states to be described; in essence, 

they "provide" a quantitative description of the law of 

increase of entropy. 

Now based on formulas (24), (115), (117) and (119) let 

us construct generalized expressions for entropy, a rate of 

its change аs well as its accumulation in the 

mechanothermodynamical system consisting of a liquid 

(gas) medium of volume V and a solid of volume V: 
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Entropy state indices can be built similarly for a system 

composed of many media. 

It should be noted that the interaction (contact) of two 

media in formulas (122)–(125), which can be complex in 

nature, is taken into account only implicitly in terms of 

medium state parameters (stresses, strains, temperature). It 

is obvious that this is only the first step to a comprehensive 

(generalized) solution of the problem stated. 

The simplified writing of expression (123) for the 

entropy increment of the mechanothermodynamical system 

composed of finite volumes dV and dV given in [32] can 

be re-written in the following form: 
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Expression (125) can also be represented in terms of 

specific quantities as: 
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or on the basis of (123) as: 
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In formulas (111)–(113) for calculation of The Tribo-

Fatigue entropy STF and its accumulation STF(t), the specific 

entropy sTF is assumed to be integrated in terms only of the 

damageable part of the solid – the dangerous volume. 

However the influence of undamagable regions can also be 

allowed for by integrating STF over the entire volume: 

     ; 
V

eff

u

V

TFTF dVVdVVsS  (128) 

 

   

 

,

, ,

TF TF

t V

eff

u

t V

S t s V t dVdt

V t dVdt

  

 

 

 
 

(129)
 

where 
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or 
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From expression (131), it is seen that eff

u < 0 is observed 

outside the dangerous volume (at 0uueff  ). This means that 

the specific Tribo-Fatigue entropy sTF also appears to be 

negative (or less than unity for its alternative definition) 

outside the dangerous volume where the limiting state is not 

reached. Negative values of eff

u  and sTF can then be 

interpreted as the absence of damageability or in other words 

as the retention of structure and/or properties of the solid. 

As follows from the above-stated, the assumption on the 

entropy additivity is wrong in the general case for a system 

composed of both a solid and a liquid (gas) where chemical 

reactions can occur. By analogy with Λ-functions, 

interaction functions of different-nature energy (179) it is 

necessary to introduce interaction functions of different-

nature entropy by adding them to expression (125) in effort 

to determine total effective entropy: 
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or 
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where the subscripts Q and Ch denote the thermodynamic 

and chemical entropy components. 

Formulas (132)–(133) are supplemented by the 

generalized interaction functions  S

TFT \ , 
 S

ChQ \ ,  S

ChTFT \\  in 

mechanothermodynamical systems. This means that the 

hypothesis on the additivity of thermodynamic and Tribo-

Fatigue entropy is not accepted. The appropriate -functions 

of interactions should then be specified and introduced into 

equations (132)–(133). 

Translimiting states. According to the available infor-

mation, the theory of translimiting states is still insufficient-

ly developed [2]. The elements of this theory will be set 

forth on the basis of solutions (72), (76), and (77). 

Figure 4 shows the general analysis of the contribution of 

mechanical-chemical-thermal damage (parameters D) to the 

process of reaching the limiting state by the MTD system. 

Having studied formulas (72), (76) and Figure 4, the 

following conclusions can be drawn. 

1. The growth of parameters D means a decrease in the 

relative damage speed vch / vch(*) (Figure 4, a). In other 

words, mechanical-chemical-thermal damage speeds up the 

process of reaching the limiting state by the MTD system 

the faster, the greater is the value of the parameter D and/or 

the speed vch(*).  

2. The parameter mv influences greatly the system dam-

age, and this influence is the greater, the larger is this pa-

rameter (Figure 4, b). The important feature of this influ-

ence is that this environment is very sensitive to the excita-

tion of mechanical stresses in the MTD system and to the 

temperature rise if the parameter mv > 5. In other words, in 

such a case, the translimiting state can be realized, for 

which the damage measure (53) is more than unity 

( eff

u  > 1), whereas according to (52), it is sufficient to 

have eff

u = 1 to reach the limiting state. 

Two specific cases are illustrated in Figure 4, c. 

The first case – D = 0. There is no electrochemical corro-

sion influence on wear-fatigue damage. But this doesn’t mean 

that the electrochemical corrosion process does not occur. In 

fact, according to (76) when D = 0, we have (if mv = 1): 

 01 *

(*)

 b
v

v

ch

ch , 

this implies that the situation should be the following: b* = 1 

and vch / vch(*) = 1, i.e., the corrosion speed is insensitive to 

this factor (mechanical or frictional stresses). This means that 

threshold values of 0 , 0

w , and T 0 exist for a given environ-

ment. The corrosion speed in such an environment does not 

vary for   0 , 0

ww   and T   T0 (see formula (77)). 

 

 
 

Figure 4 – Analysis of the influence of mechanical-chemical-

thermal processes on the system damage 
 

The second case – D = 1 and, hence, 1/(1 – D)   . 

Explosive damage is realized within the system as 
eff

u   . In this case, it should be 
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Since vch = 0 is the impossible event then it can be as-

sumed that vch(*)  . This is the condition of mechanical-

chemical-thermal explosion in the MTD system. The explo-

sion is caused not just by the environmental impact – it is 

the environmental impact greatly increased by temperatures 

and mechanical stresses. 

Thus, complex function (72) for the damage of MTD 

systems can also be used for analyzing their translimiting 

states caused by a supercritical growth of thermodynamic, 

mechanical, frictional, and electrochemical loads according 

to formulas (73)–(76), i.e., 
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eff
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According to (134), there are many translimiting states 

of the MTD system defined by the condition 1eff

u . This 

is possible in those (many) cases when the state of the sys-

tem, critical in terms of its damage, is reached not at one 

but many points of the dangerous volume. Hence the as-

sumption can be made that many (different) forms of these 

states must exist.  

Above-mentioned criterion equations (43), (47), (52), 

(58), (72), and (77) are obtained from the consideration of 

the energy conditions when the limiting state has been 

reached. It is stated that they can in principle be used for 
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describing a variety of translimiting states, but only in 

those cases when situations in the MTD system are creat-

ed for an unconditional supercritical (essentially unre-

strained) growth of loads (explosions, accidents, disasters, 

fires, etc.). 

Another more general approach for the analysis of trans-

limiting states is that it considers damage space defined 

according to (59), (64) by volume measures 
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On the basis of (72)–(76) the spatial damage measures 

can be defined as 
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where 0V , kS  are the working volumes. So criterion (77) 

can be written with regard to (136): 
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The advantage of (137) is that the interaction of danger-

ous volumes [2] at different loads is taken into account 

when the limiting state of MTD systems is formed. In addi-

tion, as mentioned above, since absolute damage volumes 

are determined by a number of structural-technological and 

metallurgical factors (59), these factors appear to be auto-

matically accounted for in the limiting state criterion for 

such systems.  

If the rupture of interatomic bonds takes place only over 

one dangerous section of an object at all "points" of this 

section )( 0uueff  , then it is divided into two parts, which 

corresponds to the condition  = 1. But if the complex of 

loads (mechanical, electrochemical, thermodynamic, etc.) is 

such that "all" interatomic bonds undergo rupturing over 

this section, then the process occurs that is called disinte-

gration of object whose death corresponds to the condition 



* . This is the most common form of the translimiting 

state: the system disintegrates into an infinite number of parti-

cles of arbitrarily small size (for example, atoms). It is clear 

that there must be some intermediate forms of the limiting 

states of the system. The condition of their implementation is 

    .1 )(\)()(\

*   chTchchMT  (138) 

Naturally, equation (138) is similar to (134). Their dif-

ference is that conditions (134) are written in terms of ener-

gy damage measures, while conditions (138) – in terms of 

volume (space) damage measures. 

The general classification of conceivable states of ob-

ject in terms of volume damage is given in Table 1 that is 

similar to the one in Table 1 [1], but with the difference that 

a special index (asterisk *) is introduced for translimiting 

states.  

The probability interpretation of irreversible damage 

events in the MTD system can be made. 

 
Table 1 – Characteristics of the states of objects 

A-state Undamaged  = 0  

 

А-evolution: 

characteristic 

states of a 

system 

(damage) 

B-state Damaged 0 <   < 1 

C-state 
Critical 

(limiting)   =1 = c  

D-state 
Supercritical 

(translimiting) 1 < 

*
  

E-state Disintegration 

*
 

 

If  

 1)(0  P  (139) 

is the classical probability of the MTD system failure in 

terms of damage ( 10   ) within the time interval 

( Tt ,0 ) (item XIV) then 1)1(  сP  is the reliable 

probability of unconditional functional failure. For super-

critical states the concept of reliable probability for super-

critical damages [60] is introduced  

   .1 *

*  P  (140) 

Supercritical damages (  

*1 ) correspond to numer-

ous and infinite shapes and sizes of particles that are 

formed in the process of degradation (disintegration) of the 

system.  

Figure 5 illustrates the relationship between the system 

damage system and probability. 

 

 
 

Figure 5 – Relationship between the system damage  

and probability 

 

Note that the data in Table 1 can be interpreted in the 

following way. If 

 ,*   (141) 

then the absolute size of forming particles should be as 

small as desired according to (32), i.e., 

 
.0* d
 

(142)
 

Assume, to a first approximation, the logarithmic rela-

tionship between d  and  . Then 
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 d  (143) 

As it follows from the above-mentioned, all states of the 
MTD system are predicted by the corresponding equations 
(134) and/or (138). A drawback of this prediction or de-
scription is that the dependence of damage measures [for 
example (134)] on the determining parameters appears to 

be smooth over the entire range  0  (Figure 6, a). 

However it should be noted that this is valid only in the 
case (essentially, in the ideal case) when the values of the 

determining parameters (, w, , etc.) are continuously 
increasing. But the surface of damage has jumps (disconti-
nuities) whenever the jumps of any load or any abrupt 
changes in hardening-softening processes (Figure 6, b, c) 
are realized. It is easy to understand that in reality these 
specific situations lead to damage jumps, i.e. to qualitative 
changes or system state transformations. It should be added 
that our approach has a special advantage: it is based on the 
analysis of damage as a physical reality independent of the 
fact what damage mechanisms are already known and what 
mechanisms will be clarified. 

The last remark is of particular importance. The fact is 
that when there is "conventional mechanical fracture of a 

regular mechanical object" ( = 1), i.e., it disintegrates, at 

least, into two parts, the existence of the MTD system does 
not end – in accordance with Item XIV, a long period 
comes when the object disintegrates into particles 

(  

*1 ). Here not so much mechanical loads, as elec-

trochemical and thermodynamic phenomena (processes) are 
the determining parameters. On the basis of the above-said, 
the law of disintegration of the MTD system is formulated 
in the form 

 .
0VV mm

ijT
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 (144) 

Law (144) suggests the mass conservation of the system 
regardless of the conditions of its degradation and disintegra-
tion. In other words, the mass of disintegrating particles 

 ijTVm  (whatever their size) cannot exceed (or it can be less 

than) the initial mass 
0Vm of the MTD system.  

 

 
 

Figure 6 – Formation of damage surfaces (a) and functions (b, c) 

 due to the changes in the determining parameters  

(( / d > 0,  / d > 0, \ > 0) 

Hence, there is the need of the analysis (at least, short) 

of the evolution of systems 

Evolution of the MTD system. Give the description 

[61] of the behavior of the deformable solid – solid system 

in some environment on the most general – dialectical 

grounds. The origination of the system (occurrence, life 

and degradation) can be represented in the following general 

form (145): 

 

(145)

 

Here А, В are some separate bodies (elements, etc.), 

details, objects. Their existence in the past (t) is sketched 

by the dashed line with the arrow. 

This writing  

  (146) 

means that the creation (origination) of a system (or an 

object) is the product of energy (Е0) interaction () of 

bodies А, В implemented in the time t0 within the volume 

V0. Of course, this product is neither A nor B; but it is an 

entity with special integral characteristics and functions 

which neither A nor B can possess. 

The writing  

  (147) 

means that the life of the system is the process of its energy 

Е(V, t) interaction with the environment V (x, y, z) during the 

time t. This interaction with the environment always causes 

surface damages to originate and accumulate in the system 

elements since t, V, E are variable. The system itself is also 

characteristic for the force interaction of its elements (А  В). 

This means is that not only surface damage, but also volume 

(internal) damage should arise and develop, since the forces of 

such interaction are distributed over the volume of the ele-

ments and vary with time. Therefore the life (longevity) of the 

system is shown in (146) and (147) by the wavy lines. Accu-

mulation of irreversible surface and volume damages is the 

softening process which eventually causes the system degrada-

tion and fracture. 

Assume that the system elements, as well as the entire 

system reveal the hardening property, i.e., the ability to 

increase its resistance by both external and internal influ-

ences when they are hardened. Then the outcome of 

struggle of opposites (i.e., hardening-softening processes) 

also determines the longevity of the system, or its lifetime 

(operation). If the damage level increases in time, then the 

system degrades inevitably, as soon as the damage reaches 

some limiting (or critical) value.  

Thus the writing 

  (148) 

means the following. The degradation of the system is the 

process that leads to its disintegration within the volume 
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Vk in the time tk into fragments (( , )) and residues R. The 

degradation is accompanied by the release of the energy 

Еk; the fragments and residues dispersed in time and space 

constitute a set () of disintegration products. 

The products of the system degradation are represented 

by three components in expressions (145) and (148). First, these 

are the modified bodies А and В (denoted as  and , re-

spectively). Secondly, these are system residues (denoted 

as R). In other words,  and ) are the recognizable parts 

(fragments) of the disintegration products of the system 

since А and В are their images. As far as R is concerned, it 

is the unrecognizable (or hardly recognizable) part of the 

disintegration products of the system. This part can be 

represented as the one consisting of at least four compo-

nents: 

  (149) 

i.e.,  are the А residuals embedded in  and trapped by 

it.  are В residuals in , i.e., these are the В fragments 

embedded in  and trapped by it.  are the А and  re-

siduals dissipated in the space (environment) V and in the 

time t. Finally,  are the В and  residuals dissipated in 

the space V and in the time t. 

Residuals and fragments are going in the future (+t). 

Their existence is shown in (145) by the dashed arrow. This 

existence can be separate and is marked by the commas 

between the symbols , , R. 

Expression (145) cannot be read or represented as some 

mathematical model. It should be understood as the con-

ventional (symbolic) writing of the sequence of interrelat-

ed processes of system origination, existence, and degra-

dation. 

As the simplest specific example, consider one of the 

widespread active systems: crankshaft journal (A) – slid-

ing bearing (B) of the rod head of the engine. Our interest 

is the longevity of the system. 

The technological process of manufacturing parts А and В 

ends in the assembly BА  – it is the process of system 

origination (146). Obviously, it is implemented in the time t0 

within the volume V0 at the energy expenditure Е0. Then the 

life of the system (147) begins: run-in, normal operation, grad-

ual loss of efficiency. In the course of the life the system 

BА  changes into А В), i.e., assembly components un-

dergo wearing at the contact pressure q and wear-fatigue dam-

ages accumulate in the crankshaft journal when acted upon by 

cyclic stresses σ. This occurs when the energy E(V, t) interacts 

with the environment (oxidation of friction surfaces) during 

the entire lifetime t. Thus, both the environment V(x, y, z) and 

the interaction energy E vary with time. The damage accumu-

lation causes the system to degrade according to (148) and, 

hence, its failure (wear-fatigue fracture of the crankshaft jour-

nal, frictional fracture of bearing inserts). The system under-

goes failing in the environment Vk in the time tk followed by 

the release of the energy Ek. In the process of failure (148), the 

 and  fragments – the parts of the shaft A and the inserts B. 

Also R residuals – the wear products (149) are formed: the 

crankshaft particles embedded into the sliding bearing inserts 

( ); the insert particles embedded into the crankshaft journal 

surface ( ); the products of surface damage of the crankshaft 

journal ( ) and the inserts ( ) scattered in the environ-

ment in the time t, i.e., the wear products removed from the 

friction zone. 

As seen, based on (145) a sufficiently general and correct 
qualitative analysis of interactions of the system elements 
and the system with the environment is given. 

The outlined qualitative picture can serve as a basis, 
for instance, for setting and describing quantitatively the 
longevity N (resource) of the active system. It is obvious 

that t = N is the function of cyclic stresses  in the 
crankshaft journal, the contact pressure q in the tribo-
coupling, the wear rate I of system elements, the accumu-

lation rate of wear-fatigue damage  , the properties 

(composition, structure) of the environment СV and the 
elements A, B of the system (СА, СВ): 

  .,...,,,,,, BAV CCCIqNN     

This equation for longevity can be specifically imple-
mented, for instance, using the methods of Applied Me-
chanics. 

Similarly, the processes of origination, life, and degra-
dation of other systems, for example, solid – fluid, etc. can 
be described. Differences will be only in specifying what 
interaction forces are implemented in the investigated case 
and what damages arise and develop. 

If the biological system, for example, cardiovascular 
or musculoskeletal is considered, then a sufficient quali-
tative description of its life, damage, and degradation 
can be made with the use of the same symbolic model (145) 
developed as applied to inorganic active systems. Fur-
ther, it is necessary to take into account a specific com-
plex of biological phenomena and factors [61, 62]. It is 
shown that approach (145) can also be used to describe the 
general processes of birth, life and, death of a living or-
ganism that together with environment and habitat condi-
tions forms the most complex living system in it. For this 
case the concept of Tribo-Fatigue life as a special meth-
od of damage accumulation [62] is developed. 

Approach (145) is also used for description of the evolution of 
the MTD system, including in the translimiting state. Table 
2 contains this approach with regard to the above-described 
diverse characteristics of system damage. It is obvious that 
the qualitative representation (145) of the evolution is supple-
mented here with the specific numerical analysis – at all 
nodal points of development (states A, B, C) and degrada-
tion (states C, D, E). 

The general classification of the conceivable states of a 
system (object) in terms of damage is contained in col-
umns 1, 2, 3. It is similar to the Table 1, but with the spec-
ification (as marked above) that the level of supercritical 

damage ( *

Σ ) is assigned the superscript that means such a 

state. Table 2 also contains the appropriate physical char-
acteristics of system states (column 5) and the additional 
analysis (column 4) based on the characteristic of its in-

tegrity ( = 1 – ). 
Column 6 contains the symbolic description of all system 

states. The above-described energy states of the system are 
based on conditions (31) and (32) and contain two uncertain-
ties. These uncertainties are interpreted as follows. When 

*

D  (according to (31), the absolute average size (
*

d ) 

of particles forming during the system fracture must become 

arbitrarily small ( 0* Dd ) by condition (32). 
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Table 2 – Characteristics of the damage evolution of the MTD system 

MTD system states Parameters 
State properties 

(physical) 

Symbol  

description of states 

Energy  

conditions of 
states 

Technogenic situations 

and possible  
damages 

Symbol Characteristic damage 
integrity 

( = 1–) 

1 2 3 4 5 6 7 8 

А Undamaged 
A = 0 

A 
= 1 

Maintaining the integrity 

(size, shape, mass), 

structures (skeleton) and 

support (implementation) 

of all functions 

V0=const 

А0  B0 

0effu   

ueff = 0 

Ψ = 0 

 

Failures (e.g., short-

time reversible 

change of function) 

В Damaged 
B
<1 

В
>0 

Development of complex 

damage and malfunction-

ing 

Vij > 0 

А B 

0effu   

0
effu u   

Ψ < 1 

Incidents (e.g., 

permissible system 

wear) 

С 
Critical  

(limiting) 


=1=

C
 

C
= 0 

Total functional loss, 

multicriterion limiting 

state 
С   (  ) 

0
effu u 

 
Ψ = 1 = ΨС 

dс = 1 

Accidents (e.g., 

fatigue failure of 

engine shaft) 

D Supercritical  *

D <∞ 
D
< 0 

Formation of multiple 

fragments, dissipated 

fragments and residuals 

,  
 

,  
1 *

Dd  d  
Catastrophes (e.g., 

mid-air collision) 

E 
Disintegration 

(breakdown) 
*

E  ∞ 
E
 –∞ 

Formation of nanoclus-

ters, scattered atoms, 

elementary particles 
 

*
Ed   d  

Cataclysms (e.g., 

nuclear explosion) 

 

Table 2 reveals these uncertainties (column 7). Namely, it 

is assumed that supercritical states are described by the 

changes in the size of particles forming within the range 

  kdD 11 *  ,  

where the left restriction is determined by unity (as the 

symbol of the "single whole"), and the right one – arbitrari-

ly (or infinitely) large integer k that lies within the limit 

   


*min1lim D
k

dk d k10 , (150) 

where the conventional, yet finite quantity ( ) is introduced 

as the limit of a possible growth of the integer k to the 

quantity (k = ) that can be specified as the total quantity of 

atoms in the system under investigation. In principle, it can 

be calculated if the size d  of atoms is known for materials, 

of which the system is "made"; thus d k10 . In (150) it is 

then considered that the system fracture means its disinte-

gration into such a "quantity" of particles that is equal to the 

initial number of atoms available in the system. The latter 

can be reasonably calculated practically for any systems. It 

has been established, for example, that the amount of atoms 

in the Universe approximately equals 1067 [38]. 

Thus, the growth of the level of translimiting damage of 

a body ,*

 ,1* u  (column 7, Table 2) signifies an 

appropriate decrease in the characteristic size of forming 

particles. Thus, the "location" of these particles is not specified 

– it can be any. But, naturally, it is meant that all particles will 

be finally spent for construction of those or other new sys-

tems (i.e., not necessarily – one system) [2]. This means 

that the reproduction of systems is inevitably implemented 

after their degradation – but, of course, in new conditions 

with new initial parameters. 

Note: a significant drawback of the performed analysis 

is the absence of the determining parameter – the time t. 

As applied to the specific MTD system, Figure 7 explains 

our idea of the time of its existence. The general concept of 

the unidirectional time arrow is borrowed from Thermody-

namics (mostly from Physics). Thus, the question about the 

nature of time is not being discussed here (as in Physics and 

Philosophy). Further, according to Item XIV, it is assumed 

that the existence time of the system under examination is 

always finite and is defined by the interval (0, *T ) where *T  

is the time before the system disintegration (Table 1). Within 

this interval the time of its disintegration (failure) *TT   is 

really defined. The failure of the system is interpreted as usu-

al: it means the total loss of system functions and properties, 

which corresponds to the fact that the damage measure (for 

example,  or ) reaches the limiting (critical) value 

с = 1 = . At the moment of failure the system, therefore, 

ceases to exist as the whole. In Figure 7 it is shown that the 

existence of the system under study corresponds to a certain 

time interval on any its more general scale – for the Earth, 

the Solar system, the Universe (it is marked by the vertical 

arrows which separate the past and the future). 

 

 
 

Figure 7 – Lifetime of the material system 
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Now describe the evolution of the MTD system. 
Fig. 8 illustrates that based on the mechano-

thermodynamic viewpoint, the A-evolution in time (Table 1) is 

implemented in two stages. The stage ABC ( = eff

u   1) is 

the lifetime of the system as the integrity when it performs all its 
functions. It is represented as the development accompanied by 
an inevitable growth of damage and the deterioration of some 
functions up to the moment when the limiting (critical) state is 
reached at the point C. At this point the system completely "los-
es" all its functions, for example, the accident (either the splitting 
of one of the system elements into 2 parts, or the unacceptable 
(limiting) wear in system, etc.). The second stage CDE then 
occurs and is represented as the degradation process accompa-
nied by the occurrence of numerous and various translimiting 
states caused, for example, by catastrophes, explosions, cata-
clysms, etc. Example: at the point C the vessel under static pres-
sure is divided into 2 parts; it disintegrates into a large number of 
"infinitely small" particles, if the nuclear explosion (point E) is 
implemented in it; it collapses into fragments if the explosion in 
it is initiated by a different quantity of explosive substances (line 
CDE). The moment of body disintegration into atoms (elemen-

tary particles, etc.) is denoted by the symbol ( ). 
 

 
 

Figure 8 – Hypothesis of the MTD system evolution 
 

The second stage (translimiting states) can be described in 

two ways. Either the analysis of the average size *

Dd   d  of 

disintegration particles is used (formulas (142) and (143)) and 
represented by the curve CDdEd in Figure 8 (note that in this case 

the origin of coordinates is shifted to the point C and the size *

Dd  

ranges from 1 to 0 (line CC′), or the damage analysis eff

u    

is used and represented by the curve CDE in Figure 8 (remind 
that here the "number of damages" corresponding to the disinte-
gration (breakdown) of the system is designated by the number ψ 
conventionally equal to the number of atoms in the system. 

The potentiality of the parametric analysis appears to be 
interesting and beneficial. 

In our opinion, the representations as set forth above do 
not contradict the known and approved theories and the 
experimental results. 

From Figure 8 it is possible to find two important fea-
tures of system A-evolution by time in terms of damage. 
First feature: the plot reveals the sacramental point C, at 

which three special – critical units с

eff

u   1 , 

1Tt  and cdd  1  "come together". It is the evolu-

tion epicenter, or its apotheosis. These critical units also 

define the "division" of A-evolution into two essentially 
differing stages – development stage ABC and degradation 
stage CDE. It is the point when the system loses all its 
functions, i.e., the point of transition to various translimit-
ing states. 

Second feature: using the plot in Figure 8, obviously, it 

is possible to describe and define the effective energy con-

servation law 

 






 
*

)()(
0

T

T

eff

T

eff dttudttu  (151) 

where effu , 


effu  is the effective energy on the first (devel-

opment) and on the second (degradation) stages, respective-

ly. The statement of this law is as follows: effective energy 

absorbed by the system in the process of reaching the limit-

ing (critical) state is identically equal to the released (scat-

tered) effective energy in the process of its degradation up 

to disintegration (for example, into atoms). 

Geometrically, this law requires the equality of the three 

areas in Figure 8 

 ''' EECDECDCABCC SSS
dd 
  

where  is the function of parameter transformation [for 

example, according to (143)]. 

From the above-stated three main conclusions follow: 

1 Damages are the fundamental physical property (and 

the functional duty) of any system and all of its elements.  

2 Damage of each object (any existing one) inevitably 

grows up to its breakdown – decomposition (disintegration) 

into a set of particles of arbitrarily small size, i.e., it is the 

unidirectional process of time: 

       0\0

,, ,,,,,,,,,, utmChVVVT kjiijTij

WV

n

WV

n

UU , (152) 

 *

Dd  
t


  d. (153) 

3 Not only the unity and struggle of opposites but also 

the directivity of various and complex physical processes of 

hardening-softening (depending on the level of loads and 

time) are typical of the evolution of the system by damage. 

It means that the Λ-function of damage interactions (of all 

kinds) can take three classes of values: a) Λ < 1 when the 

hardening process is dominant; b) Λ > 1 when the softening 

process is dominant; c) Λ = 1 when a stable hardening to 

softening process ratio is found. 

Thus, the first law of Mechanothermodynamics states 

that for evolution of any system the unidirectional process 

of its damage and disintegration, finally, into an infinitely 

large number of small components (fragments, atoms, ele-

mentary particles, etc.) is inevitable. In fact, it is equivalent 

to the recognition of the thesis on the unending of evolution 

if it is taken into account that disintegration products of any 

system become a construction material for new systems. 

Thus, the evolution hysteresis is formed. Generalizing, it 

may be said that our Universe is indestructible as it evolves 

by damage. This corresponds to the philosophical concept 

that matter and motion are eternal, and damage is the fun-

damental property (and a duty) of all systems, including 

living and intelligent ones [1, 31, 61]. 
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The second law of Mechanothermodynamics states: 

Λ-functions of interactions must take three classes of values 

(Λ  1) to describe not only the unity and struggle, but also 

the directivity of physical hardening-softening processes in 

the system, i.e., the system evolution by damage [1, 31]. 

Generalization of the results presented above with re-

gard to [1, 2] is shown in Figure 9. It can be seen that the 

state of a system can be equivalently described in terms of 

either energy or entropy. 

 

 
 

Figure 9 – Energy (left) and entropy (right) approaches to the 

development of Mechanothermodynamics (М – Mechanics, 

Т – Thermodynamics, TF – Tribo-Fatigue) 

The main drawback of such descriptions is the known 

unreality of energy and, hence, of entropy: physical en-

ergy carriers are not detected and, apparently, do not 

exist. As R. Feynman [64] said figuratively, they cannot 

be touched. Damages are quite a different matter: they 

are physically real, can be touched, actually define any 

of the conceivable states of material bodies and systems. 

Kinetic process of their accumulation, as well as the time 

stream is inevitable and unidirectional. If Mechanother-

modynamics considers the damage of a system as its 

fundamental physical property (and duty), one can hope 

that based on it, the consistent general theory of evolu-

tion of any systems, including living and intelligent, can 

be created. For instance, the idea of life as of a special 

method of damage accumulation (biological, mechanical, 

intellectual, etc.) is being developed in [32, 61]. 

Thus, the attempt was made above to formulate the 

basic provisions of a new (or, better to say, integrated) 

physical discipline – Mechanothermodynamics with the use 

of the energy principles. This discipline combines two 

branches of Physics in effort not to argue or not to compete 

with each other, but to take a fresh look at the MTD system 

evolution (Figure 10). 

From Figure 11 it follows that the principles of 

Mechanothermodynamics can be formulated in two 

ways: 1) Mechanics  Tribo-Fatigue  Mechanother-

modynamics and 2) Thermodynamics  Tribo-Fatigue 

 Mechanothermodynamics. Thus, Tribo-Fatigue has 

become a bridge for transition from Mechanics and 

Thermodynamics to Mechanothermodynamics. The fact 

that the both ways are leading to one purpose and, final-

ly, yield the same (unified) result, means that the above-

mentioned two methodologies of analysis are valid, cor-

rect and do not contradict each other. 

 

 
 

Figure 10 – Ways toward Mechanothermodynamics as the new branch of Physics 
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Figure 11 – Tribo-Fatigue bridges from Mechanics (M) and 

Thermodynamics (T) to MTD Mechanothermodynamics (the solid 

lines with arrows; the dashed lines show the unrealized ways (for 

more than 150 years) from M or T to MTD) 

 

Returning to Figure 1, it is seen that it is ended with the 

arrow with a question: what sort of object will be behind 

the MTD system? The obvious and common answer is: it is 

our real world. Nowadays it is being studied actively by 

numerous and various sciences – from Chemistry and Biol-

ogy... through Mechanics and Thermodynamics... and up to 

Philosophy; from all points of view. From Figure 1 it is 

clear that the MTD system should be followed by an object 

that is somewhat more complex (however simpler) than the 

real system, for example, the MTD system with some "ele-

ments of intelligence". The first works in this area of re-

search are already available [65–67]. 

Analysis and generalization of experimental data. 
Experimental verification of generalized criterion (72) of 

the limiting state of a MTD system is extremely difficult 

because of the absence of relevant experimental data. Their 

acquisition is though very relevant but at the same time is 

very difficult and expensive. Therefore, in this paper, the 

analysis of the particular solution of criterion (77) in form 

of (78) is given. 

From (78) it is easy to obtain a number of formulas im-

portant for application. So, the conditions of purely thermal (or 

thermodynamic) damage (when  = 0 and w = 0) or purely 

mechanical damage (when T  0) will be as follows: 

 ;0uTaT   (154) 

   .0

22

τ\ uaa wnn    (155) 

For isothermal mechanical fatigue (when w = 0) we have 

   ,0

2

\ uaTa nTTM    (156) 

and for isothermal frictional fatigue (when  = 0) we obtain 

   .0

2

\ uaTa wTTM    (157) 

The general analysis of the above-described partial cri-

teria allows three main conclusions to be made. 

1 The growth of loading parameters (, w, T, D) re-

sults in the corresponding acceleration of reaching the lim-

iting state (u0). 

2 The limiting state of the system can also be reached by 

increasing only one (any) of the loading parameters (when 

maintaining the same values of other parameters).  

3 If   > 1, the damageability of the system accordingly 

enhances (i.e., the processes of its softening are dominant), and 

if   < 1 it slows down (i.e., the processes of its hardening 

appear to be preferable) in comparison with the damage due to 

the joint action of loading parameters alone (with no regard to 

the dialectic interaction of irreversible damages). 
The last conclusion is also the result of a fundamentally 

new approach to the construction of the criterion of the lim-
iting state of MTD systems [67]. According to this ap-
proach, not the mutual influence of the factors, but the in-
teraction (   1) of phenomena determines the damage 
processes in the MTD system [1, 31–33, 67]. In this regard, 
the paper synthesized the results of more than 600 diverse 
experimental data. This permitted the generalized MTD 
function of critical by damage states to be revealed. 

Refer to one of the special cases of criterion (78) – iso-
thermal mechanical fatigue. From (156) it follows that 

   .
1

;log
2

1
log \01

n

TTMTTT
a

TauCC    (158) 

According to (158), the dependence of limiting stresses 
on the parameter of thermomechanic resistance CT in the 
double logarithmic coordinates is to be a straight line with 
the angular coefficient (1/2). The general regularity is as fol-
lows: the higher the value of the parameter CT , the greater 
is the quantity σ-1T . Figure 12 shows a satisfactory evidence of 
this dependence for numerous different-grade steels tested 
for fatigue in different conditions [57, 59, 68]. It is seen that 
the CT value varied by more than two orders, i.e. by a factor 

of 100 or more, and the values of the endurance limit T1  – 

by more than two orders, i.e., by a factor of 10 or more, thus 
the testing temperature varied in the range from the helium 
temperature to 0.8Ts (Ts 

is the temperature of melting) . As 
shown in Figure 12, equation (158) adequately describes the 
results of more than 150 experiments. 

Equation (158) is also checked for different-class metal 
materials according to the fatigue results that have been 
obtained by many authors and are illustrated in Figure 13, 
а. In [57, 59] it is possible to find the list of literature ref-
erences. In Figure 13, b, the similar analysis is made on the 
basis of the test results for tension at different temperatures 

(иT is the stress limit). In this case, it is taken that –1 = иT 
in equation (158). It is obvious: the correlation coefficient 
is very high – not less than r = 0.722 (very occasionally), 
but in the most cases it exceeds r = 0.9; the analysis in-
cludes more than 300 test results. Works [57, 59] contain 
other examples of successful experimental approbation of 
criterion (158). This allows us to hope that even more gen-
eral criteria (for example, equations (77) and (78)) will ap-
pear to be practically acceptable. In our opinion, further 
studies must confirm our hope. 

 
Figure 12 – Endurance limits of constructional steels vs.  
the parameter СT (A. V. Bogdanovich., L.А. Sosnovskiy) 
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Figure 13 – Dependences –1(CT) (а) and и(CT) (b) for various 

metal materials (A. V. Bogdanovich., L. А. Sosnovskiy) 

As defined above, criterion equation (155) is valid for 
σ ≤ σu, and depending on the testing conditions, τW can be 
interpreted as the largest contact pressure (p0) at the center 
of the contact area at rolling. It can also be interpreted as the 
sliding stress (τw) or as the average (nominal) sliding pres-
sure pa in the contact zone, or as the fretting contact pressure 

(q). If the value 1  is fixed and и1  then equa-

tion (28) can be represented in the form of the diagram of 
the limiting states of Tribo-Fatigue systems [2, 57, 68] 
(Figure 14), in which the zones of realization of spontane-
ous processes of hardening-softening (Λ  1) are clearly 
distinguishable. So, Figure 14 yields the above-mentioned 
obvious conclusions: if Λ < 1, then we are dealing with the 
self-hardening system (during tests or during the operation 
under these conditions); if Λ > 1, then the system turns to 
be self-softening; if it is found that Λ < 1 converts to Λ > 1, 
then it implies that owing to the changes in the determining 
conditions of operation or use, the hardening processes are 
replaced by the softening processes. 

Additional experimental support for these conclusions is 
provided in Figures 15–17. Note that for spontaneous hard-
ening (for Λ < 1, Figures 14–16) it appears that the stress 
limit in wear-fatigue tests is higher, than in routine fatigue 
tests. It means that in these conditions the processes of fric-
tion and wear become "useful". There are numerous works 
(for example, [69]), according to which dosed wear in real 
Tribo-Fatigue systems (for example, wheel/rail) leads to the 
appropriate growth of their fatigue strength. Vice versa, at 
Λ >> 1 (Figure 17) they lead to a strong damage growth: the 
fatigue limit decreases with increasing the contact pressure q 
by factor of 2–3. In addition, there are many works (for ex-
ample, [70]), according to which the system wear results in a 
sudden decrease of fatigue strength. 

 
 

Figure 14 – Diagram explaining the basic features  

of Λ-interactions in the Tribo-Fatigue system 
 

Tables 3 and 4 summarize the physical signs of different 
(often encountered in practice) signs of the limiting state 
that can find use in the corresponding research areas. 

As for the determination of the parameters TM \  and 

 \n  it is shown in [2, 57, 59] that, for example, the param-

eter  \n  is the function of the relative skewness coefficient 

of wear-fatigue damage: 
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
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w
n  (159) 

Hence, it follows that  \n  depends not only on the ab-

solute values of effective (σ, τw) and limiting (σ–1, τf) 

stresses, but also on their ratios, namely:  /w , f /1 , 

 /1 , fw  /  1. This means, for example, that signifi-

cantly different regularities of irreversible damage accumu-
lation will be implemented depending on the realization of 

this or that of the inequalities    1 , w   f . This 

conclusion corresponds to the known experimental results 
and theoretical models. Figure 18 shows the analysis with 

regard to the possible dependences   \\ loglog nn  [2, 

59]. A more detailed analysis of the interdependences 

   \\ nn  can be found in [2, 57, 59]. 

 

 
 

Figure 15 – Influence of rolling friction on the resistance  

of contact-mechanical fatigue during the tests of the Tribo-Fatigue 

steel 45 (shaft)/steel 25 KhGT (roller) system 

(L. A. Sosnovskiy, S. A. Tyurin) 
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Figure 16 – Limiting stresses vs. the contact pressure for the 

tribo-fatigue steel 45 (shaft)/cast iron (partial bearing insert) 

system (V. I. Pokhmursky et al.) 

 

 
Figure 17 – Contact pressure vs. changes in the fatigue 

limit at fretting fatigue according to R. B. Waterhouse 

(nimonic-90 – Harris W. J.; steel with 0.5% С – 

Peterson R. E.; titanium – Sinclair G. M. Liu H. W. 

Corten H. T.; aluminum alloy – Corten H. T.) 

 
Table 3 – Set of main indicators of physical state 

Energy state 
Condition of reaching the 

limiting (critical) state Symbol 
Physical state  

and its characteristic 

М Mechanical state ij  lim

0
ijeff

nu u
 

  

Т Thermodynamic state T  
0

ST Teff
Tu u  

MTD 
Mechanothermodynamical state 

ijT , T  

lim ( )

0

ijT

S

T
eff

T T
u u



 


  

tMTD 
Mechanothermodynamical state 

in time , ,ijT T t  

lim

lim

( )

0

ijT

S

T
eff

T T

t t

u u


 






 

Nomenclature: σlim is the limiting stress; Ts
 
is the melting temperature; tlim 

is the longevity; σij is the stress (strain) tensors; TΣ is the temperature due 

to all heat sources; σijT is the stress tensor in the isothermal (TΣ = const) 

state; σijT, TΣ is the stress-strain state and the thermodynamic state, re-

spectively; σijT, TΣ, t is the stress-strain state and the thermodynamic 

state in time, respectively 
 

The plot of the MT \  interactions on the parameter MT \  

can be analyzed in a similar way. Such a plot of steel, alumi-

num alloys, and nickel (according to the extensive experi-

mental results [2, 57, 59]) in the double logarithmic coordi-

nates is shown in Figure 19. The correlation coefficient has 

appeared to be very high: from r = 0.862 to r = 0.999. The plot 

of )( \\ MTMT   as a rule, undergoes sudden changes for 

log MT \  = 0, i.e., at the value MT \ = 1 when thermal and force 

damages appear to be equilibrium (as compared to the similar 

changes in the plots in Figure 18). 
 

Table 4 – Specification of characteristics and their physical 

signs of the limiting state 

Criterion 
Condition of reaching the limit-

ing state 
Physical sign 

L1 
σlim = σu 

σu
 
– stress limit at tension 

Static fracture 

L2 

σlim = σ–1
 σ–1 – mechanical fatigue 

limit 

Fatigue fracture 

(into parts) 

L3 

σlim= pf
 pf

 
– limiting contact pres-

sure at rolling 

Pittings of critical 

density (critical depth), 

excessive wear 

L4 
σlim = τf

 τf
 
– limiting stress at sliding 

Limiting wear 

L5 

1

lim

1

p

 


  

  

σ–1p, σ–1τ – limiting stress 

during the direct effect 

implementation [2] 

Fatigue fracture (into parts) 

depending on the contact 

pressure (index p) at rolling 

or on the friction stress 

(index τ) at sliding (direct 

effect in Tribo-Fatigue) 

L6 

lim

f

f

p 




  


 

pfσ, τfσ – limiting stresses 

during the back effect im-

plementation [2] 

Pittings of critical density 

(critical depth) or excessive 

wear at rolling or sliding 

depending on the level of 

cyclic stresses σ (index σ) 

(back effect in Tribo-

Fatique) 

L7 
σlim = σ–1q

 σ–1q – fretting fatigue limit 

Fatigue fracture at fretting 

corrosion and (or) fretting 

wear 

L8 

σlimT= σ–1T
 σ–1T

 
– isothermal fatigue 

limit
 

Limiting state depending on 

temperature (isothermal 

fatigue) 

L9 
Tlim = Ts 

Ts
 
– melting point 

Thermal (thermodynamic) 

damage 

L10 
tlim = tc

 
tc

 
– longevity 

Time (physical) prior to the 

onset of the limiting state 

on the basis of any sign 
 

 
 

Figure 18 – Typical plots of the character and direction  

of hardening-softening processes (   1) vs. the skewness 

coefficient of the damage  : 1, 2 – mechano-rolling fatigue;  

2, 3, 4 – mechano-sliding fatigue; 4, 5 – fretting-fatigue 
 

For steels and nickel at MT \  < 1 the direct dependence is 

found between MT \  and MT \ , and at MT \  > 1 it becomes 
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inverse. For aluminum alloys the dependence MT \ ( MT \ ) is 

also direct, but it is located (at MT \  < 1) in III quadrant. 

 

Figure 19 – Logarithmic plots of )( \\ MTMT   built using the 

experimental data (L. А. Sosnovskiy, A.V. Bogdanovich) 

 

Thus, it is experimentally confirmed that the interaction 

parameter MT \  is sensitive not only to the effective ther-

mal-to-mechanical energy ratio, but also to the structure and 

composition (or nature) of metal materials. The last conclu-

sion is also valid for the parameter  \n : its numerical values 

appear to be significantly different, for example, for met-

al/metal and metal/polymer active systems – even in the case 

when the ratios 1-σ\σ and fw  \  are identical for them. 

The data of more than 600 tests of metals and their al-

loys (under isothermal conditions) obtained by many au-

thors are briefly analyzed and have been presented above. 

It was found that the thermodynamic dependence of 

limiting stresses can be represented in the TCloglog lim   

coordinates (Figures 12 and 13 and formula (158), where 

function 

  TMТnTT aauTCC \0 ,,,,   (160) 

is satisfactory under both the conditions of static tension  

(σlim
 = σu) and fatigue fracture (σlim = σ–1) for numerous and 

different metal materials (steels; aluminum, titanium, and 

other alloys, etc.). In addition, interrelation (158) appears to 

be valid practically within the entire possible interval of 

temperature ( STT 8,0 ) and stress (σ ≤ σu) varying with the 

correlation coefficient r = 0,7 in the specific cases and usu-

ally with r > 0,9. Then model (158) turns to be fundamental 

(Figure 20). This simplified model at first might seem to be 

questionable, since in the known literature [71 etc.] the ex-

plicit temperature dependence of limiting stresses is de-

scribed by means of complex curves. This is attributed to 

the changes in the failure mechanisms of different materials 

under various testing conditions – at normal, operating, and 

other temperatures. 

Nevertheless the fundamental nature of model (158) is 

supported experimentally (Figures 12 and 13). 

 

Figure 20 – Generalized (82) MTD function of limiting states of 

metals and alloys ( Sи TT 8.0;lim  ) 

 

From the theoretical standpoint, the following considera-

tions speak in favor of model (158). It has four parameters 

[formula (160)], and one of them (u0) is a fundamental con-

stant of substance (formulas (48), (49) in [67]), and two others 

(aT, an) are defined by the boundary conditions as the ratios of 

u0 and physical constants σd and Td
 
of this material [59]: 

 2

0 / dua  , ./0 dT ua   (161) 

The methods of σd
 
and Td determination are described in 

[2, 57, 59]. Here we remind that the material failure limit σd 

is determined under the tension conditions as TΣ → 0 and the 

failure temperature Td – at the body heating at 0 . As can 

be seen from the above, the dual character of accumulation 

processes of damage and failure caused by 1) mechanical 

stress and 2) thermal activation of this stress in time [48] is 

considered in the general case. Finally, as briefly described 

above and outlined in [4, 48], the function TM \  1 consid-

ers the interaction of damages due to the changes in the ratios 

σ  σlim. In the known studies [2, 4, 72] it is also convincingly 

proved many times that just this ratio is responsible for the 

character and damage mechanisms at elastic, inelastic, elasto-

plastic and plastic strain. Also the role of thermal fluctuations 

(TΣ < Td) is, for example, studied in detail in [48, 49]. 

What is left is to put the "last point" on the argumenta-

tion in favor of the fundamental character of model (158). If 

it is really fundamental, then it must also be valid for non-

metal, for example, polymer materials – according to hy-

pothesis (48) in [67]. The analysis results of the polymer 

tests based on the experimental data [73] are presented in 

Table 5 and Figure 21. It is obvious that model (158) is 

verified by the correlation coefficient r = 0.917. Note that 

the test results for not only "normal" samples (with a di-

ameter of ~ 5 mm), but also for thin polymer threads and 

films are processed, not only at tension, but also at torsion 

and bending. A large deviation of several points from the 

fundamental straight line is due to the fact that for these 

results TM \ = 1 is conventionally assumed thanks to the 

lack of experimental data to assess the real value of this 

parameter. 

The generalized experimentally substantiated MTD 

function of the limiting states (in terms of damage) is shown 

in Figure 22. Relatively large deviations of particular exper-

imental points from the predicted ones are also seen in Fig-

ures 12 and 13 for two reasons: either the available refer-

ences have no data for a correct assessment of required pa-

rameters, or the conducted experiments contain significant 

errors or they are not quite correct methodically. 
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Figure 21 – Dependence σu(CT) for polymer materials 

(A.V. Bogdanovich) 

 
Table 5 – Analysis of the main characteristic of polymer mate-

rials on the basis of the experimental data [73] 

Material and reference 

mol

kJ

,0u
 










 2

2

MPamol

kJ
/

K mol

kJ

K

MPa
,

n

T

a

а

 

Test data 

MPa,σ

K

b  

Sam-

ple 
size 

Polyethylene high-

density film (HDPF), 

grade 20806-024 

108 4102.94

0.275
  

275...383

32 386...  
5 

Polypropylene film 

(PF) grade 03П10/005 
119 4101.70

0.234
  

273...423

150 570...  
5 

Hardened staple fiber 

made of polyvinyl 

alcohol (PVA) "Vinol 

MF" 

111 
5107.62

0.227
  

273...453

80 802...  
5 

Thread based on 

perchlorvinyl resin 

(PCV) grade "Chlorine" 

114 
4102.56

0.285
  

273...383

60 376...  
5 

Caprone thread (PCA)  

(GOST 7054067) 
169 

4101.68

0.282
  

275...453

300 740...  
5 

Polyethylene 

terephthalate film (PET) 

(TU 6-05-1597-72) 

222 
4109.82

0.342
  

279...498

200 362...  
4 

Polyamide film PM-1 

(TU 6-05-1597-72) 
202 

3102.1

0.297
  

273...673

12 240...  
7 

Polystyrol (PS) at 

bending 
281 2102

0.627
  

77...290

56 108...  
10 

Polymetalmethacrylate  

(PMMA) at bending 
277 2101.74

0.558
  

77...290

66 116...  
10 

High-impact 

polystyrene (HIPS ) at 

tension and torsion 

277 

252 

2102.53

0.699
  

2101.84

0.636
  

77...290

48 94...  
77...290

50 105...  

10 

 

 

10 

 

 

Figure 22 – Experimentally justified MTD function of critical by 

damage states of metal and polymer materials 

Note that model (158) may seem to be non-fundamental 

because of its simplicity. However, remind the classic dic-

tum: the fundamental dependence cannot be complicated 

(or: any law is described by the simplest formula. 

Thus, model (158) can serve for prediction (shown by 

the arrows from T  to lim  in Figure 20) of the mechanical 

behavior of materials in the thermodynamic medium: 
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 (162) 

The state of medium in (162) is described by the param-

eters T , Tа , TM \ . 

As it is seen the predictions by (158) and (162) are ap-

plicable for the materials of different nature and structure 

irrespectively of damage and fracture mechanisms at static 

and cyclic loading. It would be interesting to make a similar 

analysis of the tests at impact, but such an analysis lies out-

side the scope of the present work. 

Certainly, due to the linearity of function (158), the reverse 

prediction appears to be possible and effective. If it is neces-

sary to have a given mechanical state of the material (deter-

mined by the parameters 0u , )lim(T ), then the requirements 

can be formulated to the medium (determined by the parame-

ters T , Tа , nа , TM \ ) where the system can operate (in 

Figure 20 it is shown by the arrows from σlim to T): 
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(163)

 

Note that the attempts to construct the explicit temperature 

dependence of limiting stresses in uniform, semilogarithmic 

and logarithmic coordinates for different materials and differ-

ent testing conditions are quite ineffective (Figure 23). 

We will further briefly analyze a more complex problem 

of the MTD system operation in the medium in which the 

processes of thermal corrosion and corrosion at stress are 

implemented. From (77) at 0w  we have 

 .
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
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
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   (164) 

Upon simple manipulations we obtain 

 ,log
2

1
)(),lim( chTchT С  (165) 

where, as can be easily shown, thermal resistance to corro-

sion at stress is: 

 
).,,,,

,,,,,(

)()()()(

\0)()(

TvTchvchch

TMTnchTchT

mvmvv

aauTCC




 (166) 

It can be seen that laws (158) and (165) are fundamen-

tally (and formally) identical and differ in the fact that ap-

propriate functions (160) and (166) take account of those 

parameters which describe the damage processes character-

istic for the phenomena analyzed. So, in (166) the parame-
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ters ,chv ,)(chv ,)(vm ,)(Tchv )(Tvm  describe the processes of 

thermal corrosion at stress (formula (76) in [67]). Based on

(165) and (166) it is easy to build prediction algorithms 

[like (162) and (163)] of resistance to corrosion at stress.  

 

Figure 23 – Explicit temperature dependences of the fatigue limit for metal materials (based on 136 test results of various authors) 
 

A further and detailed analysis of (165) and (166) is be-

yond the scope of this study. 

Note that solutions (77)–(157) can be analyzed similarly 

for other testing (or operating) conditions. 

Conclusion. 

1 It is shown, that the creation of Mechanothermody-

namics – a generalized physical discipline is possible by 

constructing two bridges. The first is Tribo-Fatigue entropy 

which paved the way from Thermodynamics to Mechanics. 

The second is a fundamental understanding in Tribo-

Fatigue of irreversible damage of everything that exists 

which paved the way from Mechanics to Thermodynamics 

(Figures 9–11). The first and the second principles of 

Mechanothermodynamics are presented and discussed. 

2 Main provisions (I–XV) which constitute the 

foundation of the general theory of evolution of mech-

anothermodynamical systems are formulated.  

2.1 The following theories and models are developed  

• energy theory of limiting states,  

• energy theory of damage,  

• foundations of the theory of electrochemical damage, 

• elements of the theory of translimiting states of mech-

anothermodynamical systems. 

2.2 Hypothesis about the evolution of mechanothermo-

dynamical systems (see Tables 1 and 2, Figures 7 and 8) 

was developed. This hypothesis describes the lifetime of the 

system as a whole (stage I) and the duration of its 

translimiting existence or degradation (stage II). It was 

established [see (151)] that the effective energy absorbed 

by the system in the process of reaching its limiting state is 

identically equal to the released (dissipated) effective 

energy in the process of its degradation up to the 

decomposition (for example, into atoms). 

3 Methods and procedures for calculating effective 

(dangerous) energy which is spent on generation, motion 

and accumulation of irreversible damages are developed 

(see formulas (79)–(83) and corresponding text). 

4 Fundamentals of the theory of -interaction between 

damages caused by loads of different nature (mechanical, 

thermodynamic, etc.) (see formulas (69), (70), (161) and 

corresponding text) are given. This theory allows 

considering the influence of the spontaneous processes of 

hardening-softening on the state of damage of mech-

anothermodynamical systems. 

5 Correlation of system damage with probability (Figure 

5) in the course of its evolution is analyzed. Idea of reliable 
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probability 1 < P* <  of damage at the stage of translimiting 

states is proposed. 
6 Concept of "arbitrarily" ("infinitely") large but of 

course finite number big (denoted by ) [see formula (150)] 
is introduced. Its practical importance is shown for the 
analysis of the evolution of systems by damage [see 
formulas (152) and (153)]. 

7 Set of the physical characteristics and specification of 
the features of limiting states of objects and systems (see 
Tables 3 and 4) are given. They may be useful for the 
specialists in the relevant fields of research. 

8 In practical terms, a single MTD function of critical 
by damage (limiting) states of metal and polymer materials 
operating in different conditions (formula (158) and Figure 
20) is obtained in this work. The analysis of more than 600 
experimental results (Figures 12, 13, 19, 21, 22) showed 
that this function is fundamental: it is valid for low-, aver-
age- and high-strength states of pure metals, alloys, and 
polymers over a wide range of temperatures of medium 
(from helium temperature to 0.8TS, where TS is the material 
melting temperature) and mechanical stresses (up to the 
strength limit for single static loading) while the fatigue life 
was of the order of 106–108cycles. The fundamental MTD 
function as found in the present study can be used for effec-
tive prediction of the behavior of concrete MTD systems in 
different operating (test) conditions [procedures (162) and 
(163)]. Model (165), (166) is proposed for the description 
of the influence of thermal corrosion and corrosion at stress 
on the changes in the limiting states of materials. 

Finally, it should be noted that the research in Mech-
anothermodynamics is just beginning. The deepening and 
broadening of the scope of works in this new and promising 
area of knowledge are expected in the near future. In the 
authors’ opinion, the utility of works is so great that it is 
difficult to foresee their results. 
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