УДК 539.43

А. В. БОГДАНОВИЧ, доктор технических наук, Белорусский государственный университет, Минск, Н. А. МАХУТОВ, член-корреспондент РАН, институт машиноведения им. А. А. Благонравова РАН, Москва, Россия,

ТЕОРИЯ МНОГОКРИТЕРИАЛЬНЫХ ПРЕДЕЛЬНЫХ СОСТОЯНИЙ СИЛОВЫХ СИСТЕМ

Разработаны основы энергетической теории многокритериальных предельных состояний силовых систем. Предложен комплексный энергетический критерий предельного состояния силовых систем в зависимости от температуры, уровня контактных и внеконтактных напряжений, коррозии, который учитывает взаимодействие повреждающих частей механической и тепловой энергий и предполагает, что на разрушение затрачивается лишь часть подводимой к силовой системе энергии.

Энергетический подход представляется наиболее общим при решении отдельных задач прочности и износостойкости элементов конструкций [1, 2], поскольку энергетические критерии универсальны и интегрально характеризуют напряженно-деформированное состояние [3]. К указанным критериям обращаются при анализе процессов статического, длительного и циклического (объемного и поверхностного) разрушения материалов и узлов трения [1–10].

Реализуем энергетический подход применительно к любой силовой системе. Для таких силовых систем в наиболее общем случае износоусталостное повреждение (ИУП) обусловлено следующими воздействиями: а) контактной нагрузкой - в первом приближении будем ее характеризовать удельной силой трения $\tau_W = f p_a$, где $p_a - t_w$ наибольшее контактное давление, f – коэффициент трения; б) повторно-переменной (внеконтактной) нагрузкой - в первом приближении будем ее характеризовать циклическими напряжениями σ; в) термодинамической нагрузкой – интегрально будем ее характеризовать температурой T_{Σ} , обусловленной всеми источниками тепла; г) электрохимической нагрузкой – опосредованно будем ее характеризовать коррозионным параметром (D), при этом следует различать коррозию под напряжением (D_{σ}), коррозию при трении (D_{τ}) и термическую коррозию (D_T) . Рассматриваемый случай называем общим в том смысле, что в силовой системе реализуется практически весь комплекс повреждающих явлений. С другой стороны, как нетрудно видеть, приняты два упрощающих положения: не пространственная система контактных и циклических напряжений, а лишь их линейные эквиваленты. Однако такая схематизация нагрузок остается принципиальной, поскольку в силовой системе учтены все типы нагрузок, определяющих ее повреждение.

Применительно к подобным силовым системам сформулируем основные представления, которые можно положить в основу теории предельных состояний [11–19].

(1) Зарождение и развитие комплексного ИУП определяется, главным образом, четырьмя частными явлениями: механической усталостью, трением и изнашиванием, тепловыми и электрохимическими (коррозионными) процессами. Эти явления называются частными в том смысле, что каждое из них может быть реализовано как независимое и отдельное, и оно ведет к соответствующему предельному состоянию по частным (отдельным) критериям. (2) Все эти частные явления и процессы в силовой системе развиваются одновременно и в одной зоне, поэтому предельное ее состояние обусловлено не одним каким-либо из этих явлений, а их совместным (совокупным) действием – ИУП критической величины.

(3) Кинетика ИУП определяется не всей подводимой к силовой системе энергией U, а лишь ее эффективной (опасной) частью $U^{eff} \ll U$, которая затрачивается на повреждение.

(4) Критерием предельного состояния служит условие достижения эффективной энергией U^{eff} критической величины U_0 в некоторой области ограниченных размеров элемента силовой системы – в его опасном объеме.

(5) Энергия U_0 считается фундаментальной для данного вещества константой; она не должна зависеть от условий испытания, видов подводимой энергии, механизмов повреждения.

(6) Эффективная энергия U^{eff} в общем случае может быть представлена функцией четырех составляющих: тепловой U_T^{eff} , силовой U_{σ}^{eff} , фрикционной U_{τ}^{eff} и электрохимической U_{ch}^{eff} энергий

$$U^{eff} = F_{\Lambda} (U_T^{eff}, U_{\sigma}^{eff}, U_{\tau}^{eff}, U_{ch}^{eff}),$$

где F_{Λ} учитывает кинетическое взаимодействие частных повреждающих явлений в комплексном процессе ИУП.

(7) Процессы электрохимического (коррозионного) повреждения могут быть учтены как термическая коррозия ($D_{T(ch)}$), коррозия под напряжением ($D_{\sigma(ch)}$) и коррозия трения ($D_{\tau(ch)}$), так что функция принимает вид

$$U^{eff} = F_{\Lambda}(U^{eff}_{T(ch)}, U^{eff}_{\sigma(ch)}, U^{eff}_{\tau(ch)}).$$
(1)

В общем случае предельное состояние трибофатической системы достигается не в результате простого роста эффективных энергий и, следовательно, накопления необратимых повреждений, обусловленных различными воздействиями (нагрузками), но в результате их взаимодействия, направленность которого характеризуется развитием явлений самопроизвольного упрочненияразупрочнения материала в данных условиях эксплуатации или испытаний.

Таким образом, принимая во внимание функцию (1), гипотезу о предельном состоянии трибофатической системы можно представить в следующем виде:

$$\Phi(U_{\sigma(ch)}^{eff}, U_{\tau(ch)}^{eff}, U_{T(ch)}^{eff}, \Lambda_{\lambda j}, m_k, U_0) = 0, \qquad (2)$$

где m_k , k = 1, 2, ..., - некоторые характеристики свойств контактирующих материалов, Λ_{ij} – параметры (функции) взаимодействия необратимых повреждений, обусловленных нагрузками разной природы.

Дадим конкретизацию (2) в наиболее простой постановке. Будем считать, во-первых, что напряженное состояние, обусловленное повторно-переменной нагрузкой, является одноосным и характеризуется наибольшим нормальным напряжением σ . Во-вторых, примем, что контактное взаимодействие элементов системы описывается фрикционным напряжением τ_w . Пусть далее T – температура среды. Тогда, без учета коррозионных процессов, гипотеза (2) будет иметь вид

$$\Phi(\sigma^2, \tau_w^2, T, \Lambda_{\sigma \setminus \tau}, \Lambda_{T \setminus M}, m_k, U_0) = 0, \qquad (3)$$

поскольку силовая, фрикционная и тепловая составляющие эффективной энергии пропорциональны соответствующим параметрам:

$$\begin{array}{l}
U_T^{eff} = a_T T; \\
U_{\sigma}^{eff} = a_{\sigma} \sigma^2; \\
U_{\tau}^{eff} = a_{\tau} \tau_W^2,
\end{array}$$
(4)

где коэффициенты $a \ll 1$ выделяют из полных тепловой и механической энергий их эффективные части U^{eff} .

Отметим, что здесь и далее речь будет идти об удельных величинах суммарной эффективной энергии и ее составляющих (например, о величинах энергий, отнесенных к единице количества вещества).

По мере роста значений σ и (или) τ_w , и (или) T, и (или) времени (числа циклов нагружения) соответственно увеличивается и суммарная эффективная энергия (1) до тех пор, пока она не достигнет критической (предельной) величины U_0 . В этом случае должно наступить предельное состояние силовой системы, которое характеризуется, например, образованием усталостной трещины критического размера или достижением предельно допустимого износа в системе, либо реализацией обоих указанных состояний одновременно.

Предположение о том, что предельное состояние силовой системы наступит, когда простая алгебраическая сумма эффективных энергий достигнет критической величины

$$\Sigma U^{eff} = U_T^{eff} + U_{\sigma}^{eff} + U_{\tau}^{eff} = a_T T_{\Sigma} + a_{\sigma} \sigma^2 + a_{\tau} \tau_w^2 = U_{\kappa},$$

считается неправомерным. В самом деле, подобный критерий, как нетрудно понять, не в состоянии описать возможные принципиально многообразные результаты комплексного повреждения. Поэтому энергетический критерий предельного состояния силовой системы следует записать с учетом взаимодействия необратимых повреждений:

$$U^{eff} = \Lambda_{T/M} \left[a_T T + \Lambda_{\sigma/\tau} \left(a_\sigma \sigma^2 + a_\tau \tau_w^2 \right) \right] = U_0.$$
(5)

Здесь $\Lambda_{\sigma/\tau}$ учитывает взаимодействие эффективных частей механической энергии, обусловленных нормальными σ и фрикционными τ_W напряжениями, а $\Lambda_{T/M}$ – взаимодействие тепловой и механических составляющих эффективной энергии; кроме того, величины Λ учитывают и процессы "залечивания" повреждений, каков бы ни был их механизм. Заметим также, что в выражении (5) эффективная часть тепловой энергии определяется изменением суммарной температуры $T_{\Sigma}=T_2 - T_1$ в зоне силового контакта, обусловленной всеми источниками тепла, в том числе выделяемого при механическом (объемном и поверхностном) деформировании, структурных превращениях и т. п.

Критерий (5) имеет весьма общий характер. Он не содержит необоснованных коэффициентов и не зависит, например, от того, каким образом нагружается система (статическое, длительное, циклическое нагружение), или от того, какие механизмы накопления повреждений и разрушения реализуются.

Из общего критерия (5) нетрудно получить ряд важных частных случаев. Так, условия чисто теплового (или термодинамического) разрушения (когда $\sigma = 0$ и $\tau_W = 0$) либо чисто механического разрушения (когда $T_{\Sigma} = 0$) будут соответственно следующими:

$$a_T T_{\Sigma} = U_0; \tag{6}$$

$$\Lambda_{\sigma/\tau} \left(a_{\sigma} \sigma^{2} + a_{\tau} \tau_{w}^{2} \right) = U_{0}.$$
⁽⁷⁾

В случае изотермической механической усталости (когда $\tau_W = 0$) имеем

$$\Lambda_{T/M} \left(a_T T_{\Sigma} + a_{\sigma} \sigma^2 \right) = U_0, \qquad (8)$$

а для изотермической фрикционной усталости (когда $\sigma = 0$) аналогично получаем

$$\Lambda_{T/M} \left(a_T T_{\Sigma} + a_{\tau} \tau_w^2 \right) = U_0.$$
⁽⁹⁾

Чтобы конкретизировать методику расчета энергии (2), надо указать способ учета влияния электрохимических процессов на повреждаемость силовой системы. Введем параметр $0 \le D \le 1$, которому придадим следующее содержание: его увеличение должно быть эквивалентно росту эффективной (расходуемой на образование и накопление ИУП) энергии в силовой системе вследствие развития электрохимической повреждаемости. Такое влияние нетрудно описать путем соответствующего изменения величин параметров *а* в критерии (5). В самом деле, если уменьшить величину *а* в (1 - D) раз, т. е. ввести в критерий (5) выражение a/(1-D), то получим: рост *D* означает соответствующее увеличение *а*. Тогда критерий (5) можно записать в обобщенном виде [20]:

$$\Lambda_{T/M} \left[\frac{a_T}{1 - D_T} T_{\Sigma} + \Lambda_{\sigma/\tau} \left(\frac{a_\sigma}{1 - D_\sigma} \sigma^2 + \frac{a_\tau}{1 - D_\tau} \tau_w^2 \right) \right] = U_0.$$
(10)

Введем относительные меры ω термодинамического (индекс *T*), силового (индекс σ) и фрикционного (индекс τ) повреждений с учетом влияния коррозии (1 - D) (индекс *ch*):

$$\omega_{T(ch)} = \frac{a_T T_{\Sigma}}{U_0 (1 - D_T)}; \ \omega_{\sigma(ch)} = \frac{a_\sigma \sigma^2}{U_0 (1 - D_\sigma)}; \ \omega_{\tau(ch)} = \frac{a_\tau \tau_w^2}{U_0 (1 - D_\tau)}.$$
(11)

Тогда критерий (10) принимает вид

$$\Lambda_{T/M} \left[\omega_{T(ch)} + \Lambda_{\sigma/\tau} \left(\omega_{\sigma(ch)} + \omega_{\tau(ch)} \right) \right] = 1, \quad (12)$$

или

где энергетическая мера комплексного ИУП

 $\omega_{\Sigma} = 1$,

$$\omega_{\Sigma} = \Lambda_{T/M} \left[\omega_{T(ch)} + \Lambda_{\sigma/\tau} \left(\omega_{\sigma(ch)} + \omega_{\tau(ch)} \right) \right]$$
(13)

Критерий (10) гласит: предельное состояние силовой системы наступит, когда сумма взаимодействующих эффективных составляющих энергии от силового, фрикционного и термического воздействий (с учетом процессов коррозии под напряжением, термической и трибохимической коррозии) достигнет критической величины U_0 . Критерий (10) в форме (12) или (12а) удобен тем, что все меры поврежденности являются безразмерными и имеют единый интервал ($0 \le \omega \le 1$) изменения величин.

Заметим, что в критериях (5), (10) и (13) не было наложено никаких ограничений для величин $T_{\Sigma} > 0$, $\tau_W > 0$, $\sigma > 0$. Поэтому они могут описывать достижение предельного состояния не только при комплексном ИУП, но и при частных условиях нагружения, например, как отмечено выше, при чисто тепловом или чисто механическом разрушении.

Столь широкие возможности критериев (5), (10) и (13) связаны с тем, что в их основу положены наиболее общие – энергетические представления об условиях повреждения и разрушения твердых тел. Общий анализ этих критериев позволяет сделать три основных вывода.

(1) Рост нагрузочных параметров (σ , τ_w , T_{Σ} , D) ведет к соответствующему ускорению достижения предельного состояния.

(2) Предельное состояние силовой системы может быть достигнуто и за счет увеличения только одного (любого) из нагрузочных параметров (при сохранении неизменными величин остальных параметров).

(3) Если $\Lambda > 1$, то деградация силовой системы усиливается, а при $\Lambda < 1$ она замедляется, по сравнению с поврежденностью, обусловленной совокупным действием одних только нагрузочных параметров.

Для практического применения критериев (5), (10) и (13) необходимо иметь обоснованные методики определения величин U_0 , a, Λ , D.

Выше был отмечен фундаментальный характер параметра U_0 . Если принять термофлуктуационную теорию прочности [21], то U_0 трактуется как начальная энергия активации процесса разрушения. Было показано, что величина U_0 примерно совпадает с теплотой сублимации для металлов и кристаллов с ионными связями, а также с энергией активации термодеструкции для полимеров:

$U_0 \approx U_T$.

С другой стороны, величина U₀ трактуется как энергия активации механического разрушения:

$$U_0 \approx U_M$$
.

Следовательно, энергию U₀ можно считать константой вещества:

$$U_0 \approx U_M \approx U_T = \text{const}$$
 (14)

Принимая во внимание физико-механические и термодинамические представления о процессах разрушения, запишем (14) в виде

$$U_{M} = s_{k} \frac{\sigma_{th}}{E} \frac{C_{a}}{\alpha_{V}} = U_{0} = kT_{s} \ln \frac{k\theta_{D}}{h} = U_{T}, \qquad (14a)$$

где s_k – коэффициент приведения; σ_{th} – теоретическая прочность; E – модуль упругости; C_a – атомная теплоемкость; α_v – коэффициент термического расширения объема; k – постоянная Больцмана; T_s – температура плавления; θ_D – температура Дебая; h – постоянная Планка. Согласно (14а) приближенно можно принять

$$U_0 \approx \varepsilon_* \frac{C_a}{\alpha_V},$$
 (146)

где €∗ ≈ 0,6 – предельная деформация межатомной связи.

Из равенства (14а) следует, что U_0 – энергия активации данного вещества, по порядку величины равная 1–10 эВ в расчете на одну частицу, атом или молекулу (~ 10^2 – 10^3 кДж/моль), т. е. величина, близкая к энергии разрыва межатомной связи в твердом теле [22]. И ее уровень не зависит от того, каким способом достигается разрушение – механическим, тепловым либо их совокупным действием. Методики экспериментального определения U_0 разработаны [1, 23–25]. Численные значения U_0 для материалов различных классов приведены в таблице 1.

Из формулы (14а) устанавливается термомеханическая константа материала

$$\frac{\sigma_{th}}{T_S} = E \frac{\alpha_V k}{C_a} \ln \frac{k \theta_D}{h} = \theta_{\sigma},$$

которая характеризует потерю прочности, приходящуюся на 1 К.

Значения коэффициентов *а* в уравнении (5) определяются из граничных условий:

$$T = 0, \tau_{W} = 0; \quad a_{\sigma}\sigma_{\pi}^{2} = U_{0}, \quad a_{\sigma} = U_{0} / \sigma_{\pi}^{2},$$

$$T = 0, \sigma = 0; \quad a_{\tau}\tau_{\pi}^{2} = U_{0}, \quad a_{\tau} = U_{0} / \tau_{\pi}^{2}, \quad (15)$$

$$\sigma = 0, \tau_{W} = 0; \quad a_{T}T_{\pi} = U_{0}, \quad a_{T} = U_{0} / T_{\pi},$$

где σ_{π} , τ_{π} – нормальное и фрикционное предельные напряжения при $T \rightarrow 0$, называемые пределами (механической) деструкции; T_{π} – температура деструкции (при $\sigma = 0$, $\tau_W = 0$) или предел термодеструкции.

Чтобы найти а_σ с помощью первой из формул (15), следует произвести, например, статическое испытание материала на растяжение при температуре, близкой к абсолютному нулю. Тогда практически чисто механическое разрушение нормальным отрывом будет иметь место при напряжении $\sigma = \sigma_{A}$. Для оценки a_{τ} по второй из формул (15) необходимо осуществить, например, статическое испытание на чистый сдвиг или кручение (тонкостенной трубки) при $T \to 0$. Тогда практически чисто механическое разрушение сдвигом произойдет при касательном напряжении $\tau_W = \tau_{a}$. А коэффициент a_T по третьей из формул (15) можно определить, если реализовать разрушение материала только тепловым способом (температура в этом случае $T = T_{\mu}$). Таким образом, величины σ_{a} , τ_{a} , T_{a} есть физические константы материала, определяемые из соответствующих опытов. Это означает, что и коэффициенты а должны быть постоянными материала при заданных условиях нагружения.

Что касается параметров Λ , то из (5) с учетом (4) следует, что их значения зависят от соотношения эффективных энергий в заданных условиях испытания конкретной силовой системы. Так, значение параметра $\Lambda_{T/M} = f_1 \left[\left(U_{\sigma}^{eff} + U_{\tau}^{eff} \right) / U_T^{eff} \right]$ зависит от соотношения механической и тепловой эффективных энергий, а значение параметра $\Lambda_{\sigma/\tau} = f_2 \left[U_{\tau}^{eff} / U_{\sigma}^{eff} \right]$ – от соотношения фрикционной и силовой частей механической энергии.

В первом приближении значения величин $\Lambda_{T/M}$, $\Lambda_{\sigma/\tau}$ можно установить по результатам двух опытов, на основании которых следует составить систему из двух уравнений типа (5). Если, например, T = 0, тогда $\Lambda_{T/M} = 1$ и из (7) имеем

$$\Lambda_{\sigma/\tau} = \frac{U_0}{a_\sigma \sigma^2 + a_\tau \tau_W^2}.$$
 (16)

Таблица 1 – Энергия разрыва межатомных связей для некоторых материалов

Материал	$U_o,$ кДж/Моль	Литературный источник
Металлы:		
Алюминий	222	[26]
Железо	419	[26]
Кадмий	117	[26]
Медь	339	[26]
Ниобий	629	[26]
Платина	503	[26]
Титан	507	[26]
Цинк	126	[26]
Полимеры:		
Капрон	188	[27]
Полиметилметакрилат		
(оргстекло)	750	[27]
Полипропилен	235	[26]
Полистирол	130	[26]
Полихлорвинил	147	[26]
Ионные кристаллы:		
Каменная соль	285	[26]
Хлористый литий	302	[26]
Хлористое серебро	126	[26]

Далее при известном $\Lambda_{\sigma/\tau}$ и заданной температуре T > 0 получаем

$$\Lambda_{T/M} = \frac{U_0}{a_T T_{\Sigma} + \Lambda_{\sigma/\tau} \left(a_\sigma \sigma^2 + a_\tau \tau_W^2 \right)} \cdot \tag{17}$$

Вклад процессов коррозии в ИУП силовой системы можно определить так:

$$1 - D_T = b_{e(T)} \left(\frac{v_{ch}}{v_{ch(T)}} \right)^{m_v(T)}; \ 1 - D_\sigma = b_{e(\sigma)} \left(\frac{v_{ch}}{v_{ch(\sigma)}} \right)^{m_v(\sigma)}; \\ 1 - D_\tau = b_{e(\tau)} \left(\frac{v_{ch}}{v_{ch(\tau)}} \right)^{m_v(\tau)},$$

$$(18)$$

где v_{ch} – скорость коррозии в данной среде; $v_{ch(\tau)}$, $v_{ch(\sigma)}$, $v_{ch(\tau)}$ – скорость коррозии в той же среде соответственно при термическом, силовом, фрикционном воздействиях; b_e – коэффициенты, которые учитывают процессы коррозионной эрозии; m_v – параметры, определяющие электрохимическую активность материалов при силовом (индекс σ), фрикционном (индекс τ) и термодинамическом (индекс T) нагружениях.

Параметры *D* можно вычислить и через соответствующие предельные напряжения:

$$1 - D_T = (T_{tch} / T_t)^{n_T} g_T; \quad 1 - D_\sigma = (\sigma_{-1ch} / \sigma_{-1})^{n_\sigma} g_\sigma; 1 - D_\tau = (\tau_{tch} / \tau_f)^{n_\tau} g_\tau,$$
(18a)

где T_i , σ_{-1} , τ_f – соответственно пределы термической, механической, фрикционной усталости в воздухе, а T_{ich} , σ_{-1ch} , τ_{fch} – те же величины в данной коррозионной среде. Коэффициенты *g* имеют тот же смысл, что и коэффициенты *b* в (18). Параметры *n* аналогичны параметрам m_v в (18).

Общий анализ роли электрохимической повреждаемости (параметр *D*) в достижении силовой системой предельного состояния дан на рисунке 1. Изучая совместно формулы (10) и (18), а также данный рисунок, можно сделать следующие выводы.

(a) Если параметр D растет (см. рисунок 1, a), то (1 - D) соответственно уменьшается. Следовательно, величина 1/(1 - D) увеличивается тем больше, чем меньше относительная скорость повреждения $v_{ch}/v_{ch(*)}$ (см. рисунок 1, б). Иными словами, электрохимическая повреждаемость ускоряет достижение силовой системой предельного состояния тем сильнее, чем больше величина параметра D и/или скорости $v_{ch(*)}$ термической коррозии, коррозии трения, коррозии под напряжением.

Рисунок 1 – Графики функций (18) (*a*) и величин 1/(1 - D) (б) в связи с изменением значений параметра m_v

(б) Параметр m_{ν} оказывает сильное влияние на ИУП системы, и оно тем значительнее, чем больше его величина (см. рисунок 1). Важная особенность этого влияния: данная среда очень чувствительна к возбуждению в силовой системе механических напряжений и к повышению температуры, если для нее параметр $m_{\nu} > 5$ (см. рисунок 1, б). Другими словами, в подобном случае может быть реализовано запредельное состояние, для которого мера поврежденности больше единицы ($\omega_{\Sigma} > 1$), тогда как для достижения предельного состояния, согласно (10а), достаточно иметь $\omega_{\Sigma} = 1$.

Если в критерии (10) принимают $\sigma = \sigma_{-1\tau}$, то нормальные предельные напряжения вычисляют с учетом влияния процессов трения, изнашивания и коррозии при заданной температуре (прямой эффект):

$$\sigma_{-1\tau} = \left[\frac{U_0 \frac{1}{\Lambda_{T/M} \Lambda_{\sigma/\tau}} - \frac{1}{\Lambda_{\sigma/\tau}} \frac{a_T}{1 - D_T} T_{\Sigma} - \frac{a_{\tau}}{1 - D_{\tau}} \tau_W^2}{a_{\sigma} / (1 - D_{\sigma})} \right]^{1/2}.$$
 (19)

Если же в (10) принимают $\tau_W = \tau_{f\sigma}$, то предельные фрикционные напряжения вычисляют с учетом влияния циклических напряжений и процессов коррозии при заданной температуре (обратный эффект):

$$\tau_{f\sigma} = \left[\frac{U_0 \frac{1}{\Lambda_{T/M} \Lambda_{\sigma/\tau}} - \frac{1}{\Lambda_{\sigma/\tau}} \frac{a_T}{1 - D_T} T_{\Sigma} - \frac{a_{\sigma}}{1 - D_{\sigma}} \sigma^2}{a_{\tau}/(1 - D_{\tau})} \right]^{1/2}.$$
 (20)

Графическое представление уравнений (10), (19) и (20) дано на рисунке 2 в виде многокритериальных диаграмм 1–5 предельных состояний различных силовых систем. Здесь ось ординат служит прочностной шкалой, а ось абсцисс – трибологической шкалой.

Рисунок 2 – Диаграммы предельных состояний различных силовых систем

В результате обычных испытаний на усталость (трение отсутствует, так что $\tau_W = 0$) определяют предел выносливости вала σ_{-1} (см. рисунок 2). При износоусталостных испытаниях силовой системы его значение изменяется вследствие влияния процессов трения и изнашивания (на рисунке 2, *a* обозначено $\sigma_{-1\tau}$). Это изменение определяет основные закономерности прямого эффекта. Они могут быть описаны характерными кривыми 1-5 (см. рисунок 2, а) в зависимости от типа силовой системы и условий ее эксплуатации (уровень контактной нагрузки, температура, свойства окружающей среды и т. д.). Так, кривые 1 и 2 характерны для контактно-механической усталости, кривые 2, 3 и 4 для фрикционно-механической усталости, кривые 3, 4 и 5 – для фреттинг-усталости при различных условиях испытания (температура, среда и др.).

В результате обычных испытаний пары трения (циклические напряжения отсутствуют, т. е. $\sigma = 0$) находят предельную величину фрикционного напряжения τ_f , которую называют также пределом фрикционной усталости (либо предельную величину контактного давления p_f, которая соответствует значению τ_f) (см. рисунок 2). При износоусталостных испытаниях силовой системы его значение изменяется вследствие влияния уровня циклических напряжений (на рисунке 2, б обозначено $\tau_{f\sigma}$). Это изменение определяет основные закономерности обратного эффекта. Они аналогично могут быть описаны характерными кривыми 1-5 (см. рисунок 2, б) в зависимости от типа силовой системы и условий ее эксплуатации (уровень циклической нагрузки, температура, свойства окружающей среды и др.) Здесь кривые 1-5 имеют тот же смысл, что и кривые 1-5 на рисунке 2, a. Существенное различие состоит в том, что при прямом эффекте, как уже отмечалось, предельное состояние системы достигается по критериям сопротивления механической усталости, тогда как при обратном эффекте - по критериям трения и изнашивания.

Наиболее важные выводы, которые можно сделать при анализе уравнений (10), (19), (20) и рисунка 2, таковы.

1) Процессы трения и изнашивания, в зависимости от условий их реализации, могут не только значительно снижать (см. кривые 3, 4 и 5 на рисунке 2, a), но и существенно повышать (см. кривые 1 и 2 на рисунке 2, a) сопротивление усталости силовой системы. Это означает, что в определенных условиях ее эксплуатации трение и изнашивание полезны. И еще: изменяя условия трения и изнашивания должным образом, можно эф-

фективно управлять процессами ИУП конкретной силовой системы.

2) Циклические напряжения, в зависимости от условий испытания, могут не только значительно снизить (см. кривые 3, 4 и 5 на рисунке 2, δ), но и существенно повышать (см. кривые 1 и 2 на рисунке 2, δ) износостойкость силовой системы. Это означает, что в определенных условиях ее эксплуатации циклические напряжения благоприятны. И еще: изменяя условия циклического нагружения должным образом, можно эффективно управлять процессами ИУП конкретной силовой системы.

В обоих случаях – при прямом и обратном эффектах – управляющим параметром ИУП служит соотношение типа

$$\Psi = \sigma / \tau_W = \operatorname{tg} \alpha \,, \tag{21}$$

которое имеет критическое значение

$$\Psi_{-1f} = \sigma_{-1} / \tau_f = \operatorname{tg} \alpha_{-1f} .$$
 (22)

При $\Psi > \Psi_{-1f}$ реализуется прямой эффект, а при $\Psi < \Psi_{-1f}$ – обратный.

Имея (10), (19) и (20), нетрудно рассмотреть и проанализировать ряд частных случаев.

Пусть, например, в силовой системе коррозионные повреждения не проявляются (D = 0). Тогда энергетический критерий имеет вид (5). При отсутствии трения ($\tau_W = 0$) из (5) получаем критерий предельного состояния при изотермической механической усталости (8). Если, напротив, отсутствуют циклические напряжения ($\sigma = 0$), то из (5) имеем критерий изотермической фрикционной усталости (9).

Из критериев (8) и (9) следуют формулы для предельных напряжений при изотермической механической усталости

$$\sigma_{-1} = \left[\frac{U_0 / \Lambda_{T/M} - a_T T}{a_\sigma} \right]^{1/2}$$
(23)

и при изотермической фрикционной усталости

$$\tau_f = \left[\frac{U_0 / \Lambda_{T/M} - a_T T}{a_\tau}\right]^{1/2}.$$
(24)

Критерий (8) и формула (23) работают в тех случаях, когда предельное состояние элемента конструкции обусловлено усталостным разрушением. Критерий (9) и формула (24) справедливы тогда, когда предельное состояние пары трения достигается по критериям износостойкости (предельный износ, критическая плотность или глубина ямок выкрашивания, недопустимый шум или вибрация и т. д.). Если анализируется предельное состояние силовой системы согласно (5), то требуется рассмотреть два случая: проявление прямого и обратного эффектов.

В случае изучения прямого эффекта из (5) или из (19) при $\sigma > 0$, $T_{\Sigma} > 0$, $\tau_{W} > 0$, D = 0 имеем формулу для предельных напряжений

$$\boldsymbol{\sigma}_{-1\tau} = \left[\frac{(U_0/\Lambda_{T/M} - a_T T)/\Lambda_{\sigma/\tau} - a_\tau \tau_W^2}{a_\sigma}\right]^{1/2}, (25)$$

которую, принимая во внимание (23) и (24), можно преобразовать к виду

$$\sigma_{-1\tau} = \sigma_{-1} \sqrt{\frac{1}{\Lambda_{\sigma/\tau}} - \frac{\tau_W^2}{\tau_f^2}} = \sigma_{-1} \varphi_\sigma(\tau_W), \qquad (25a)$$

где должно быть

$$\varphi_{\sigma}(\tau_W) = \frac{1}{\Lambda_{\sigma/\tau}} - \frac{\tau_W^2}{\tau_f^2} \ge 0.$$
 (26)

Если изучается обратный эффект, то аналогично из (5) или (20) имеем

$$\tau_{f\sigma} = \tau_f \sqrt{\frac{1}{\Lambda_{\sigma/\tau}} - \frac{\sigma^2}{\sigma_{-1}^2}} = \tau_f \varphi_{\tau}(\sigma) , \qquad (27)$$

где должно быть

$$\varphi_{\tau}(\sigma) = \frac{1}{\Lambda_{\sigma/\tau}} - \frac{\sigma^2}{\sigma_{-1}^2} \ge 0.$$
⁽²⁸⁾

Используя зависимости (25а) и (26) и принимая во внимание формулы (23) и (24), построим диаграммы предельных состояний для типичных силовых систем по любому критерию повреждения и/или разрушения. В отличие от рисунка 2, диаграммы предельных состояний будем строить в относительных координатах $\sigma_a/\sigma_{-1} - \tau_w/\tau_{f\sigma}$ (рисунок 3, *a*). Предельное состояние достигается всякий раз, когда реализуются равенства $\sigma_a = \sigma_{-1\tau}$ либо $\tau_W = \tau_{f\sigma}$. Дополнительно построим (рисунок 3, *б*) в двойных логарифмических координатах функциональные связи коэффициента взаимодействия $\Lambda_{\sigma/\tau}$ с относительным параметром

$$\overline{\rho} = \left(\frac{\tau_W}{\tau_f}\right)^2 \left(\frac{\sigma_{-1}}{\sigma}\right)^2 = \left(\frac{\tau_{f\sigma}}{\tau_f}\right)^2 \left(\frac{\sigma_{-1}}{\sigma_{-1\tau}}\right)^2.$$
 (29)

Геометрический смысл параметра $\overline{\rho}$ следует из диаграммы предельных состояний:

$$\overline{\rho} = \operatorname{ctg}^2 \alpha.$$

Критическое значение $\overline{\rho}_{\kappa}$ достигается при $\alpha = 45^{\circ}$; в этом случае

$$\overline{\rho}_{\kappa} = 1.$$

Вообще, параметр $\overline{\rho}$ имеет энергетическое содержание; он определяется следующим соотношением эффективных составляющих энергии износоусталостного повреждения:

$$\overline{\rho} = \frac{a_{\tau} \tau_W^2}{a_{\sigma} \sigma^2} \frac{a_{\sigma} \sigma_{-1}^2}{a_{\tau} \tau_f^2} \,.$$

Дополнительно укажем, что относительный параметр $\overline{\rho}$ асимметрии процессов фрикционного и силового повреждений изменяется в интервале $0 \le \overline{\rho} \le \infty$.

Совместный анализ рисунков 3, а и б позволяет сделать заключение, что процессами упрочненияразупрочнения в силовой системе управляют величина $\Lambda_{\sigma/\tau}$ и связанный с ней параметр $\overline{\rho}$. Кривая *1* на диаграмме (см. рисунок 3, а) отличается тем, что в силовой системе доминируют процессы упрочнения [$\phi_{\sigma}(\tau_W) > 1$, $\phi_{\tau}(\sigma) > 1$]. Заметим, что для указанной зависимости характерным является то, что $\Lambda_{\sigma/\tau} \leq 1 =$ var во всем диапазоне $0 \leq \tau_W \leq \tau_e$ изменения фрикционных τ_w и во всем диапазоне $0 \le \sigma \le \sigma_{-1}$ изменения объемных σ напряжений, а связь $\Lambda_{\sigma/\tau}$ (ρ) в двойных логарифмических координатах (см. рисунок 3, б) представляет собой экспоненциальную функцию с одним минимумом (при $\overline{\rho} = \rho_{\kappa} = 1$); при этом $\Lambda_{\sigma/\tau} = 1$, когда $\overline{\rho} = 0$ или $\overline{\rho} = \infty$. Кривая 2 на диаграмме (см. рисунок 3, а) характеризует ИУП таких силовых систем и условий их эксплуатации, для которых процессы упрочнения $[\phi_{\sigma}(\tau_W) > 1, \phi_{\tau}(\sigma) > 1]$ превалируют на одном участке заданного интервала изменения σ или τ_w , а процессы разупрочнения $[\phi_{\sigma}(\tau_W) < 1, \phi_{\tau}(\sigma) < 1]$ – на другом. В приведенном примере первые имеют место при увеличении τ_W от 0 до ~0,45 τ_f и σ от 0 до ~0,45 σ_{-1} . Можно также отметить, что для рассматриваемого случая связь $\Lambda_{\sigma/\tau}$ ($\overline{\rho}$) (см. рисунок 3, б) представляет собой сложную экспоненциальную функцию с одним максимумом (при $\overline{\rho} = \overline{\rho}_{\kappa} = 1$) и двумя минимумами, соответствующими максимально возможным значениям тах $\sigma_{-1\tau}$ и тах $\tau_{f\sigma}$ предельных напряжений. Величина $\Lambda_{\sigma/\tau} \leq 1$ во всем заданном диапазоне изменения напряжений, причем $\Lambda_{\sigma/\tau} = 1,0$ при $\overline{\rho} = 0$ и $\overline{\rho} = \infty$.

Рисунок 3 – Схемы: a – пяти типов (1–5) возможных диаграмм предельных состояний силовых систем; δ – соответствующих пяти типов (1–5) зависимостей $\Lambda_{\sigma/\tau}$ ($\overline{\rho}$)

Линии 3–5 отвечают тем силовым системам и условиям их эксплуатации, в которых во всем диапазоне изменения напряжений пределы фрикционно-механической выносливости $\sigma_{-1\tau}$ и $\tau_{f\sigma}$ снижаются, т. е. $\phi_{\sigma}(\tau_W) < 1$, $\phi_{\tau}(\sigma) < 1$, а процессы разупрочнения при ИУП преобладают.

Для кривой 3 на диаграмме значения функций

$$\varphi_{\sigma}(\tau_w) = \sqrt{1 - \frac{\tau_w^2}{\tau_f^2}}, \quad \varphi_{\tau}(\sigma) = \sqrt{1 - \frac{\sigma^2}{\sigma_{-1}^2}}$$

т. е. $\Lambda_{\sigma/\tau} = 1,0 = \text{сопst в заданных диапазонах изменения }$ $<math>\tau_W$ и σ . В этом случае ИУП в системе обусловлено независимым совместным действием сил трения и циклических (объемных) напряжений. Поэтому связь между $\Lambda_{\sigma/\tau}$ и $\overline{\rho}$ отсутствует. Кривая 5 на рисунке 3, *а* характеризует высокую степень разупрочнения силовой системы при ИУП, – имеет место резкое снижение предельных напряжений $\sigma_{-1\tau}$ и $\tau_{/\sigma}$ по мере увеличения соответственно τ_W и σ . Поэтому зависимость $\Lambda_{\sigma/\tau}(\overline{\rho})$, ей соответствующая (кривая 5 на рисунке 3, δ), описывается функцией, обратной зависимости $\Lambda_{\sigma/\tau}(\overline{\rho})$ для силовых систем, в которых имеют место процессы упрочнения (см. кривая *I* на рисунке 3). Аналогичной функцией описывается и связь $\Lambda_{\sigma/\tau}$ ($\overline{\rho}$) для систем с обратно пропорциональной линейной зависимостью *4* на диаграмме (см. рисунок 3, *a*); для нее также имеет место $\Lambda_{\sigma/\tau} \ge 1 = \text{var}$ при $0 \le \tau_W \le \tau_f$ и $0 \le \sigma \le \sigma_{-1}$ (см. рисунок 3, δ).

Рассмотрим один из частных случаев критерия (5) – изотермическую механическую усталость. Из (8) следует формула (23), которую представим так:

$$\lg \sigma_{-1} = \frac{1}{2} \lg C_T; \ C_T = \frac{U_0 / \Lambda_{T/M} - a_T T}{a_{\sigma}}.$$
 (30)

Согласно (30), зависимость предельных напряжений от параметра термосилового сопротивления C_T в двойных логарифмических координатах должна быть прямой линией с угловым коэффициентом 1/2. На рисунках 4, 5 дано убедительное подтверждение этой зависимости для различных классов материалов, испытанных в различных условиях.

Рисунок 4 – Зависимость пределов выносливости материалов разных классов от параметра C_T

Рисунок 5 – Зависимость пределов выносливости (*a*) и пределов прочности (*б*) некоторых материалов от параметра *C*_T

Таким образом, разработаны основы энергетической теории многокритериальных предельных состояний силовых систем. Предложен комплексный энергетический критерий предельного состояния силовых систем в зависимости от температуры, уровня контактных и внеконтактных напряжений, коррозии, который учитывает взаимодействие повреждающих частей механической и тепловой энергий и предполагает, что на разрушение затрачивается лишь часть подводимой к силовой системе энергии.

Список литературы

1 Циклические деформации и усталость металлов. В 2 т. / В. Т. Трощенко [и др.] / под ред. В. Т. Трощенко. – Киев : Наукова думка, 1985. – Т.1. – 224 с.

2 Механика малоциклового разрушения / Н. А. Махутов [и др.]. – М. : Наука, 1986. – 264 с.

3 **Иванова, В. С.** Усталостное разрушение металлов / В. С. Иванова. – М. : Металлургия, 1963. – 272 с.

4 Сопротивление материалов деформированию и разрушению : справ. пособие : в 2 ч. / В. Т. Трощенко [и др.] / под ред. В. Т. Трощенко. – Киев : Наукова думка, 1993. – Ч. 1. – 288 с. ; Ч. 2. – 701 с.

5 **Федоров, В. В.** Термодинамические аспекты прочности и разрушения твердых тел / В. В. Федоров. – Ташкент : ФАН, 1979. – 168 с.

6 Fleischer, G. Energetische methode der restimming des verschleibes / G. Fleischer. – Schmierungstechnic, Bd. 4, 1973. – P. 9.

7 Дубинин, А. Д. Энергетика трения и износа деталей машин / А. Д. Дубинин. – Киев : Машгиз, 1963. – 150 с.

8 Регель, В. Р. Кинетическая природа прочности твердых тел / В. Р. Регель, А. И. Слуцкер, Э. Е. Томашевский. – М. : Наука, 1974. – 560 с.

9 **Польцер, Г.** Основы трения и изнашивания / Г. Польцер, Ф. Мейсснер. – М. : Машиностроение, 1984. – 263 с.

10 **Чихос, Х.** Системный анализ в трибонике / Х. Чихос. – М. : Мир, 1982. – 351 с.

11 Сосновский, Л. А. В. К построению кинетической теории накопления износоусталостных повреждений / Л. А. Сосновский, А. В. Богданович // Тез. докл. II Междунар. симп. по трибофатике (ISTF 1996), Москва, 15–17 окт. 1996 г. / ред. : В. А. Андрияшин [и др.]. – Москва – Гомель : НПО «ТРИ-БОФАТИКА» – «СПАС». – С. 12–13.

12 **Sosnovskiy, L. A.** Kinetics of Wear-Fatigue Damage and Its Prediction / L. A. Sosnovskiy, A. V. Bogdanovich // Proceedings of the World Tribology Congress (London, Sept. 8–12, 1997). – London, 1997. – P. 568.

13 Богданович, А. В. Энергетический критерий термосилового разрушения / А. В. Богданович // Оценка и обоснование продления ресурса элементов конструкций : тр. Междунар. конф., Киев, Украина, 6–9 июня 2000 г. / под ред. В. Т. Трощенко. – Киев : ИПП НАН Украины, 2000. – С. 345–350.

14 **Bogdanovich, A. V.** Energetic Theory of Wear-Fatigue / A. V. Bogdanovich // Proc. of the III International Symposium on Tribo-Fatigue (ISTF 2000), Beijing, China, Oct. 22–26, 2000. – Beijing : Hunan University Press, 2000. – P. 164–170.

15 Трибофатика-98/99 : ежегодник / под общ. ред. Л. А. Сосновского // Теория накопления износоусталостных повреждений / под ред. Н. А. Махутова / Л. А. Сосновский, А. В. Богданович. – Гомель : НПО «ТРИБОФАТИКА», 2000. – 60 с.

16 Износоусталостные повреждения и их прогнозирование (трибофатика) / Л. А. Сосновский [и др.]; под науч. ред. Л. А. Сосновского. – Гомель – Киев – Москва – Ухань, 2001. – 170 с.

17 Сосновский, Л. А. Анализ предельных состояний по критериям износоусталостного повреждения / Л. А. Сосновский, Н. А. Махутов, А. В. Богданович // Заводская лаборатория. Диагностика материалов. – 2002. – № 6. – С. 42–46.

18 Богданович, А. В. Критерий предельного состояния силовых систем и его анализ / А. В. Богданович // Вестник Брестского государственного технического университета. – 2004. – № 4. – С. 46–51.

19 **Sosnovskiy, L. A.** Theory of the Limiting States of Active Systems / L. A. Sosnovskiy, A. V. Bogdanovich // Proceedings of the World Tribology Congress III (Washington, Sept. 12–16, 2005). – Washington, 2005. – 2 p.

20 **Щербаков, С. С.** Механика трибофатических систем / С. С. Щербаков, Л. А. Сосновский. – Минск : БГУ, 2010. – 407 с.

21 **Журков, С. Н.** Дилатонный механизм прочности твердых тел / С. Н. Журков // Физика прочности и пластичности. – Л. : Наука, 1986. – С. 5–11.

22 **Черепанов, Г. П.** Механика разрушения и кинетическая теория прочности / Г. П. Черепанов // Проблемы прочности. – 1989. – № 11. – С. 3–8.

23 Сопоставление энергий активации процессов термодеструкции и механического разрушения полимеров / А.В.Амелин [и др.] // Физика твердого тела. – 1970. – Вып. 9. – № 12. – С. 2528–2534. 24 Сопоставление энергий активации процессов термодеструкции и механических разрушений для полимеров / А. В. Амелин [и др.] // Физика твердого тела. – 1971. – № 13. – С. 2726–2731.

25 Амелин, А. Ф. Сопоставление энергий активации процессов термодеструкции и механических разрушений полиметилметакрилата / А. Ф. Амелин, О. Ф. Поздняков, В. Р. Регель // Механика полимеров. – 1968. – № 3. – С. 467–473.

26 **Журков, С. Н.** Кинетическая концепция прочности твердых тел / С. Н. Журков // Вестн. АН СССР. – 1968. – № 3. – С. 46–52.

27 Бартенев, Г. М. Прочность и механизм разрушения полимеров / Г. М. Бартенев. – М. : Химия, 1984. – 280 с.

Получено 21.02.2016

A. V. Bogdanovich, N. A. Makhutov. Theory of multicriteria limit states of active systems.

The fundamentals of the theory of energy multicriteria limit states of active systems. A complex energy criterion limiting state active systems, depending on the temperature, the level of contact and non-contact stress corrosion, which takes into account the interaction of damaging parts of the mechanical and thermal energy, and suggests that the destruction of spent only a fraction of energy supplied to the active system.