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Результаты апробации обновленного комплекса показали сокращение времени анализа и повы-

шение достоверности расчетов, что подтверждает эффективность предложенных решений. 

Модернизированный программный комплекс может применяться в лабораторных и проектных 

исследованиях при проведении FMECA-анализа систем ЖАТ, а также в составе методик доказа-

тельства функциональной безопасности микропроцессорных систем управления. 
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Развитие высокоскоростного железнодорожного движения предъявляет повышенные требова-
ния к надѐжности и функциональной безопасности систем железнодорожной автоматики и телеме-
ханики (ЖАТ). Критически важной задачей становится оценка рисков отказов, способных привести 
к авариям, человеческим жертвам и значительным финансовым потерям. В этой связи ключевой 
задачей разработчиков является обеспечение соответствия систем строгим требованиям междуна-
родных стандартов функциональной безопасности, таких как МЭК 61508 [1], которые предписыва-
ют достижение высоких уровней полноты безопасности. 

Разработка систем ЖАТ традиционно ведѐтся по V-образной модели жизненного цикла [2]. 
Данная модель предполагает последовательное прохождение этапов: анализ требований, проекти-
рование архитектуры, детальное проектирование, кодирование (реализация), затем интеграция ком-
понентов и, наконец, этапы верификации (проверка соответствия проекту) и валидации (проверка 
соответствия исходным требованиям заказчика и реальным условиям эксплуатации). 

Существенным недостатком этого подхода является то, что проектные решения, принятые на 
ранних этапах, могут быть полноценно проверены лишь на стадии валидации, когда опытный обра-
зец уже создан. Это создаѐт высокие риски того, что выявленные на финальной стадии несоответ-
ствия требованиям безопасности потребуют дорогостоящего пересмотра проекта и возврата к 
предыдущим этапам разработки. 

Сложность прогнозирования уровня полноты безопасности 
Функциональная безопасность – комплексный показатель, включающий: 
1 Защиту от систематических отказов (ошибки проектирования): обеспечивается строгим со-

блюдением регламентированных стандартами процедур на всех этапах разработки. Риски здесь ми-
нимальны при корректном выполнении всех предписанных мероприятий. 
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2 Защиту от случайных аппаратных отказов: характеризуется интенсивностью опасных 

отказов и долей безопасных отказов. Именно количественная оценка этих показателей на ранних 

стадиях проектирования представляет наибольшую сложность. 

До завершения разработки системы точно спрогнозировать достигаемый УПБ затруднительно. 

Это зачастую приводит разработчиков к одной из двух неоптимальных стратегий: 

1 Слепое следование прошлому опыту без точной количественной оценки. 

2 Применение избыточного набора методов защиты «на всякий случай», что ведѐт к удорожа-

нию и снижению конкурентоспособности продукта. 

Для решения этой проблемы предлагается использовать на ранних этапах проектирования кон-

цепцию архитектурных ограничений, изложенную в стандарте МЭК 61508 [3]. Данный подход 

позволяет формализовать требования к структуре системы и дать первоначальную количественную 

оценку еѐ потенциала по обеспечению безопасности.  

Ключевая идея метода заключается в том, что максимально достижимый уровень полноты безо-

пасности для программируемого электронного компонента (отнесѐнного по стандарту к Типу B – 

сложные компоненты, такие как микроконтроллеры и ПЛИС) не является произвольным. Он опре-

деляется двумя фундаментальными параметрами, закладываемыми на этапе архитектурного проек-

тирования: 

1 Уровень отказобезопасности N – этот параметр определяется аппаратной архитектурой си-

стемы и обозначает количество отказов, которые система может выдержать без перехода в опасное 

состояние: 

1) N = 0. Одноканальная архитектура (1oo1 – «one out of one»). Одиночный отказ элемента мо-

жет привести к опасному отказу системы. Это архитектура без избыточности; 

2) N = 1. Двухканальная архитектура. Сюда относятся как дублированные системы (1oo2 – си-

стема обеспечивает безопасность, если функционирует хотя бы один канал из двух), так и мажори-

тарные системы (2oo3 – система обеспечивает безопасность, если функционируют хотя бы два ка-

нала из трѐх). Один опасный отказ может быть перекрыт избыточным каналом; 

3) N = 2. Троированная архитектура (3oo3 – система обеспечивает безопасность, если функцио-

нирует хотя бы один канал из трех). Система может парировать опасные отказы в двух каналах. 

2 Доля безопасных отказов (ДБО) – это расчѐтный показатель, выражаемый в процентах. Он 

характеризует эффективность всех применяемых в системе диагностических механизмов. ДБО по-

казывает, какая часть всех возможных отказов компонента будет обнаружена и обработана таким 

образом, что система перейдѐт в безопасное состояние. Формула для расчѐта ДБО выглядит следу-

ющим образом: 

ДБО .s DD
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где λS – интенсивность безопасных отказов (отказы, которые не приводят к потере функции безо-

пасности или сразу же еѐ обнаруживают); λDD – интенсивность опасных отказов, которые обнару-

живаются встроенными диагностическими средствами; λDU – интенсивность опасных отказов, кото-

рые не обнаруживаются диагностикой (самая критичная категория). 

Поскольку уровень отказобезопасности N выбирается на этапе разработки концепции и является 

фиксированным, ключевой переменной величиной становится доля безопасных отказов. Еѐ сложно 

оценить экспертным путѐм. 

Для решения этой задачи предлагается метод количественного расчѐта ДБО на основе выбран-

ных аппаратных средств и программных механизмов контроля и диагностики. Это позволит ещѐ на 

стадии проектирования спрогнозировать максимально достижимый УПБ для выбранной архитекту-

ры системы, а также решить обратную задачу – подобрать оптимальный набор аппаратных и про-

граммных мер для достижения целевого УПБ. 

Для практической реализации данного метода предлагается разработать специализированное 

программное обеспечение, которое автоматизирует расчѐты и минимизирует риски недостижения 

требуемых показателей безопасности на поздних стадиях разработки. 
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Алгоритм оценки достижимого УПБ [4]: 
1 Выбор архитектуры – разработчик в интерфейсе программы выбирает целевую аппаратную 

архитектуру системы (1oo1, 1oo2, 2oo3, 3oo3), что определяет параметр N. 

2 Выбор компонентов – пользователь выбирает из встроенной базы данных конкретные аппа-

ратные компоненты, планируемые к применению в оцениваемом проекте. Для каждого компонента 

в базе данных хранятся данные по интенсивности отказов (λ), разбитые на категории (λS, λD и т. д.). 

3 Выбор методов диагностики – для каждого компонента пользователь активирует методы диа-

гностики и самоконтроля, которые планируется использовать в проекте. Программа обладает об-

ширным каталогом таких методов с предрасчитанной эффективностью (коэффициентом покрытия 

диагностики – DC), регламентированной стандартами (МЭК 61508-2 [3], МЭК 61508-6 [4]).  

4 Расчѐт ДБО – программа на основе выбранных компонентов и активированных для них диа-

гностических методов вычисляет совокупную долю безопасных отказов для всей системы. 

5 Определение УПБ – по соответствующей таблице стандарта МЭК 61508-2 программа опреде-

ляет итоговый, максимально достижимый УПБ для выбранной конфигурации. 

Разработчик может проверить, как повлияет на итоговый УПБ добавление других методов диа-

гностики или переход к другой архитектуре, например от дублированной к троированной. Это поз-

воляет найти экономически оптимальное решение, гарантированно удовлетворяющее требованиям 

по безопасности. 

Ключевые особенности работы программы: 

Интерактивность: пользователь может настраивать параметры устройства и выбирать методы 

диагностики (рисунок 1). 
 

 
 

Рисунок 1 – Пример конфигурации системы и выбора диагностик 

 

Автоматизация: расчѐты выполняются автоматически на основе выбранных данных. 

Соответствие стандартам: программа использует данные из ГОСТ Р МЭК 61508-2 [3] и МЭК 

61508-6 [4] для обеспечения точности анализа. 
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Рисунок 2 – Пример расчета неисправностей и УПБ 

 

Данное программное обеспечение может стать эффективным инструментом для проектирования 

и анализа устройств с учетом требований функциональной безопасности. Оно поможет не только 

оценить текущее состояние проекта, но и принять обоснованные решения для его улучшения. Это 

особенно важно в контексте стандартов, таких как ГОСТ Р МЭК 61508-2-2012 [3], которые требуют 

строгого соблюдения норм безопасности для критически важных систем (рисунок 2). 

Предлагаемое решение на основе метода архитектурных ограничений и специализированного 

ПО позволит реализовать комплексный подход к обеспечению функциональной безопасности си-

стем ЖАТ на ранних этапах проектирования, минимизировать риски, оптимизировать затраты и 

гарантировать достижение требуемых уровней полноты безопасности. 
 

Список литературы 
 

1 ГОСТ Р МЭК 61508-1-2012. Функциональная безопасность систем электрических, электронных, программируемых 

электронных, связанных с безопасностью. Ч. 1. Общие требования. – Введ. 01.08.2023. – М. : Стандартинформ, 2014. – 51 с. 

2 ГОСТ 33432-2015. Политика, программа обеспечения безопасности. доказательство безопасности объектов желез-

нодорожного транспорта. – Введ. 01.0.2016. – М. : Стандартинформ, 2019. – 24 с. 

3 ГОСТ Р МЭК 61508-2-2012. Функциональная безопасность систем электрических, электронных, программируемых 

электронных, связанных с безопасностью. Ч. 2. Требования к электрическим, электронным, программируемым электрон-

ным системам, относящимся к безопасности. – Введ. 01.08.2023. – М. : Стандартинформ, 2014. – 80 с.  

4 ГОСТ Р МЭК 61508-6-2012. Функциональная безопасность систем электрических, электронных, программируемых 

электронных, связанных с безопасностью. Ч. 6. Руководство по применению ГОСТ Р МЭК 61508-2, ГОСТ Р МЭК 61508-3. – 

Введ. 01.08.2023. – М. : Стандартинформ, 2014. – 102 с. 
 

 

УДК 656.259.12 

 

МОДЕЛЬ И АЛГОРИТМ ВЫЯВЛЕНИЯ ОБРЫВА СТРЕЛОЧНЫХ СОЕДИНИТЕЛЕЙ,  

НЕ ОБТЕКАЕМЫХ СИГНАЛЬНЫМ ТОКОМ   

 

Д. В. ШВАЛОВ, Е. С. РЕВЕНКО 

Ростовский государственный университет путей сообщения, г. Ростов-на-Дону, 

Российская Федерация 
 

Стрелочные соединители, не обтекаемые сигнальным током в нормальном режиме, устанавли-

ваются на стрелочных переводах, входящих в состав разветвленных рельсовых цепей с неконтро-

лируемыми ответвлениями. Такие соединители всегда дублируются в соответствии с действующи-


