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Современные микроэлектронные системы железнодорожной автоматики и телемеханики (ЖАТ) 
являются ключевыми элементами обеспечения безопасности движения поездов. Их проектирование 
и внедрение требуют обязательного подтверждения функциональной безопасности в соответствии с 
действующими нормативными документами и международными стандартами. 

Одним из основных методов доказательства безопасности является анализ видов, последствий и 
критичности отказов (Failure Mode, Effects and Criticality Analysis – FMECA) [1], включающий опре-
деление критериев и видов отказов, их имитацию, анализ последствий и расчет интенсивности воз-
никновения опасных отказов [2] для всей анализируемой системы. 

Высокая сложность современных устройств и большое количество моделируемых отказов де-

лают проведение FMECA-анализа трудоемкой задачей, подверженной риску систематических оши-

бок, связанных с человеческим фактором. Однако четкая последовательность этапов анализа позво-

ляет эффективно автоматизировать данный процесс, что особенно актуально для систем ЖАТ, где 

необходимы высокая точность и воспроизводимость результатов. 

С этой целью в 2025 году был разработан программный комплекс (ПК) для автоматизации про-

ведения FMECA-анализа систем ЖАТ [3–5], включающий три модуля: CircuitAnalyzer, 

FailureAnalyzer и FailureTreeBuilder. 

В ходе апробации программного комплекса были выявлены направления, требующие модерни-

зации для повышения производительности и точности анализа. В первую очередь, это оптимизация 

вычислительных процессов моделирования отказов в модуле CircuitAnalyzer и расширение воз-

можностей учета диагностируемости отказов сложных микросхем при расчете интенсивностей от-

казов в модуле FailureTreeBuilder комплекса. 

Модуль CircuitAnalyzer выполняет автоматизированное моделирование отказов электронных 

компонентов исследуемых схем с использованием ядра схемотехнического симулятора SPICE.                            

В исходной версии моделирование производилось последовательно, что при большом количестве 

элементов (до нескольких тысяч) приводило к значительным временным затратам. 

Для устранения данного недостатка реализован механизм многопоточного моделирования отка-

зов. Каждая модель отказа теперь может выполняться в отдельном потоке с параллельным исполь-

зованием ядер центрального процессора. Такой подход позволил значительно увеличить произво-

дительность и сократить время выполнения анализа. 

Однако использование всех ядер процессора без ограничений может приводить к снижению 

производительности из-за повышенной нагрузки на систему и конкуренции потоков за ресурсы 

процессора. Для обеспечения стабильности работы и возможности адаптации под вычислительные 

ресурсы конкретного компьютера реализован механизм семафора, позволяющий ограничивать ко-

личество одновременно выполняемых потоков. 

Количество активных потоков  
 

Nпотоков = Nядер процессора – 1.     (1) 
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Это решение обеспечивает рациональное распределение вычислительной нагрузки и предот-

вращает конфликт потоков при обращении к памяти и дисковым ресурсам. Таким образом, в зави-

симости от архитектуры вычислительной системы и числа ядер процессора, время выполнения 

полного цикла моделирования может сокращаться в несколько раз, при этом сохраняется возмож-

ность гибкой настройки параметров параллельности. 

Реализация многопоточного моделирования позволила существенно повысить эффективность рабо-

ты модуля CircuitAnalyzer, сохранив корректность и воспроизводимость получаемых результатов. 

Модуль FailureTreeBuilder выполняет построение дерева опасных отказов и расчет интенсивности 

опасного отказа всей исследуемой системы. В ходе модернизации была доработана методика учета ре-

зультатов экспертной оценки диагностируемости сложных микросхем. 

В предыдущей версии комплекса интенсивность опасного отказа сложных элементов, например, 

микроконтроллеров, для которых невозможно выполнить поэлементное моделирование, рассчиты-

валась по справочным данным без учета диагностических возможностей аппаратного обеспечения: 
 

λоо = λсправ,      (2) 
 

где λоо – интенсивность опасного отказа, 1/ч; λсправ – справочная интенсивность отказов, 1/ч. 

В модуль FailureTreeBuilder добавлена возможность задания коэффициентов диагностируемо-

сти – как общего для всей микросхемы, так и отдельных для каждого типа отказа, например, корот-

кое замыкание на «плюс питания», короткое замыкание на «минус питания», короткое замыкание 

на соседний вывод, обрыв контакта. Эти коэффициенты указываются в таблице данных объекта 

исследования. Если значения не заданы, по умолчанию принимается коэффициент равный 1. При-

мер задания данных коэффициентов приведен на рисунке 1. 
 

 

Рисунок 1 – Пример задания коэффициентов диагностируемости 
 

Модернизированная формула расчета интенсивности опасных отказов имеет вид 
 

λоо = λсправ (1 – Кдиаг),      (3) 
 

где Кдиаг – коэффициент диагностируемости для анализируемой микросхемы. 

Таким образом, если устройство обладает средствами диагностирования отказов, то их влияние 

может быть учтено с помощью коэффициента диагностируемости. В этом случае интенсивность 

опасного отказа определяется по формуле (3). 

Такой подход позволяет повысить точность оценки риска: при высокой диагностируемости зна-

чение коэффициента Кдиаг близко к единице, что приводит к уменьшению расчетной интенсивности 

опасных отказов, а при низкой диагностируемости, напротив, увеличивает еѐ, отражая рост вероят-

ности невыявленных опасных отказов. 

Проведенные модернизации существенно расширили функциональные возможности и повыси-

ли эффективность работы программного комплекса для проведения FMECA-анализа. Основные 

результаты модернизации заключаются в следующем: 

– реализация многопоточного моделирования отказов позволила ускорить вычисления в 2–8 раз 

в зависимости от числа ядер процессора; 

– использование принципа семафора обеспечило гибкость настройки и стабильность работы при 

больших объемах моделирования; 

– внедрение коэффициентов диагностируемости повысило точность оценки интенсивности от-

казов сложных микросхем и микроконтроллеров; 

– модернизированный расчетный алгоритм позволил более корректно учитывать влияние диа-

гностических систем на общую интенсивность опасных отказов. 
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Результаты апробации обновленного комплекса показали сокращение времени анализа и повы-

шение достоверности расчетов, что подтверждает эффективность предложенных решений. 

Модернизированный программный комплекс может применяться в лабораторных и проектных 

исследованиях при проведении FMECA-анализа систем ЖАТ, а также в составе методик доказа-

тельства функциональной безопасности микропроцессорных систем управления. 
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Развитие высокоскоростного железнодорожного движения предъявляет повышенные требова-
ния к надѐжности и функциональной безопасности систем железнодорожной автоматики и телеме-
ханики (ЖАТ). Критически важной задачей становится оценка рисков отказов, способных привести 
к авариям, человеческим жертвам и значительным финансовым потерям. В этой связи ключевой 
задачей разработчиков является обеспечение соответствия систем строгим требованиям междуна-
родных стандартов функциональной безопасности, таких как МЭК 61508 [1], которые предписыва-
ют достижение высоких уровней полноты безопасности. 

Разработка систем ЖАТ традиционно ведѐтся по V-образной модели жизненного цикла [2]. 
Данная модель предполагает последовательное прохождение этапов: анализ требований, проекти-
рование архитектуры, детальное проектирование, кодирование (реализация), затем интеграция ком-
понентов и, наконец, этапы верификации (проверка соответствия проекту) и валидации (проверка 
соответствия исходным требованиям заказчика и реальным условиям эксплуатации). 

Существенным недостатком этого подхода является то, что проектные решения, принятые на 
ранних этапах, могут быть полноценно проверены лишь на стадии валидации, когда опытный обра-
зец уже создан. Это создаѐт высокие риски того, что выявленные на финальной стадии несоответ-
ствия требованиям безопасности потребуют дорогостоящего пересмотра проекта и возврата к 
предыдущим этапам разработки. 

Сложность прогнозирования уровня полноты безопасности 
Функциональная безопасность – комплексный показатель, включающий: 
1 Защиту от систематических отказов (ошибки проектирования): обеспечивается строгим со-

блюдением регламентированных стандартами процедур на всех этапах разработки. Риски здесь ми-
нимальны при корректном выполнении всех предписанных мероприятий. 


