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Развитие технологий синтеза дискретных устройств и систем управления ответственными 

технологическими процессами, несомненно, связано и с параллельным совершенствованием об-

ласти технической диагностики. Особую значимость теоретические исследования принимают при 

создании новой элементной базы или развитии малоизученных компонентов. Например, так дело 

обстоит в исследовании особенностей квантовых вычислений [1, 2]. Поэтому важно не только 

разрабатывать новые методы построения и реализации дискретных устройств с высокими показа-

телями надежности и безопасности, но и продумывать и исследовать методы наделения их струк-

тур свойствами контролепригодности, самопроверяемости и отказоустойчивости. Центральным 

вопросом здесь оказывается возможность создания устройства с оперативным обнаружением не-

исправностей [3, 4]. 

Исследования автора показали, что при синтезе дискретных устройств с обнаружением неис-

правностей можно использовать сразу же два и более диагностических признака для контроля вы-

числений [5]. При этом структурная избыточность схемы встроенного контроля увеличивается не-

значительно за счет довольно простых контрольных устройств, а наблюдаемость ошибок на 

контрольных выходах возрастает на 25–40 % в зависимости от структуры объекта диагностирова-

ния и условий трансляции ошибок, вызываемых неисправностями, на его выходы [6]. 

При синтезе дискретных устройств с обнаружением неисправностей по двум и более диагно-

стическим признакам оказывается эффективным использование логической коррекции сигналов 

(ЛКС), впервые описанной в [7] под названием «логическое дополнение». Особое место здесь име-

ют равновесные коды «r из n» (r/n-коды), где r и n – вес кодового слова и его длина. Довольно легко 

синтезируется схема встроенного контроля (СВК) по кодам вида r/2r, например 2/4, 3/6 и т. д. В [8] 

предложено использовать такие коды при синтезе СВК с контролем вычислений по признакам при-
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надлежности кодовых слов, формируемых в СВК, равновесным кодам вида r/2r, а также самодвой-

ственности каждой функции, определяющей значения разрядов кодовых слов этого кода на каждом 

наборе значений аргументов. За счет простоты схемы сжатия самодвойственных сигналов [9] и те-

стера самодвойственности [5] удается строить более эффективную СВК, чем при контроле вычис-

лений только по одному диагностическому признаку. Дальнейшие исследования показали, что воз-

можен контроль не только самодвойственности каждой функции, описывающей разряды кодовых 

слов, но и так называемой самоквазидвойственности [10]. Самоквазидвойственность функции под-

разумевает равенство ее значений на ортогональных по всем переменным наборах значений аргу-

ментов. Покажем, как в случае контроля еще и этого диагностического признака эффективно при-

менять равновесные коды. 

При синтезе СВК по двум диагностическим признакам – принадлежности кодовых слов r/n-коду 

и самоквазидвойственности каждой функции, описывающей разряды кодовых слов, – эффективным 

оказывается использование 1/4-кодов. Данные коды имеют всего четыре рабочих кодовых слова 

{0001, 0010, 0100, 1000}. Тестеры данных кодов – одни из самых простых тестеров равновесных 

кодов [11]. Для полной проверки их относительно одиночных константных неисправностей требу-

ется подача всех четырех кодовых слов (это минимально возможное количество тестовых комбина-

ций для тестеров в принципе). 

Базовая структура организации контроля вычислений представлена на рисунке 1. В ней блок 

F(X) является объектом диагностирования и формирует булевы векторы <f4(X) f3(X) f2(X) f1(X)> на 

каждом наборе значений аргументов <X> = <xt xt–1 … x2 x1>. В СВК каждый вектор 

<f4(X) f3(X) f2(X) f1(X)> преобразуется в вектор <h4(X) h3(X) h2(X) h1(X)> за счет использования функ-

ций ЛКС g1(X), g2(X), g3(X), g4(X), вычисляемых блоком G(X). Преобразования осуществляются в 

блоке коррекции сигналов (БКС) по формуле       , 1, 4.
j j j

h X f X g X j    Преобразования 

выполняются так, чтобы вектор <h4(X) h3(X) h2(X) h1(X)> на каждом наборе значений аргументов 

принадлежал 1/4-коду и каждая функция hj(X) была самоквазидвойственной. Для контроля вычис-

лений устанавливается тестер 1/4-кода (1/4-TSC), схема сжатия самоквазидвойственных сигналов и 

тестер самоквазидвойственности SQDC [12]. Сигналы с выходов с двух подсхем контроля сжима-

ются на входах самопроверяемого модуля сжатия парафазных сигналов TRC [5, 6, 11].  
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Рисунок 1 – Базовая структура организации СВК 

 

Представленная на рисунке 1 структура работает в импульсном режиме, когда сигналы логиче-

ского 0 и логической 1 подаются в виде последовательностей импульсов – 0101…01 и 1010…10 

соответственно. Для этого используется генератор G импульсов a со скважностью 2, а сигнал с 

каждого входа объекта диагностирования представляется в виде последовательности с помощью 

двухвходового элемента сложения по модулю 2: на первый вход его подается сигнал с определен-

ного входа, а на второй – сигнал a с генератора.   

Для организации контроля вычислений выделяются комбинационные составляющие в структу-

рах объектов диагностирования. Определяется общее количество n выходов. Выходы разбиваются 
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на 
4

n
q

 
  
 

 подмножеств мощностью 4 без пересечений и, возможно (при n(mod4) ≠ 0), еще на одно 

подмножество, где имеется n(mod4) выходов и (4 – n(mod4)) уже использованных в других выде-

ленных четверках. Для каждой четверки выходов строится отдельная подсхема контроля вычисле-

ний по двум диагностическим признакам с использованием 1/4-кода с применением следующих 

правил: 

1 Наборы значений аргументов разбиваются на пары, соответствующие десятичным эквивален-

там двоичных представлений наборов, – пары (i, 2
t
 – 1 – i),  1

0,1, ..., 2 1 ,
t

i


   где t – число входов. 

2 Наборы i,  1
0,1, ..., 2 1 ,

t
i


   в лексикографическом порядке следования разбиваются на четы-

ре группы по 
1

32
2

4

t

t




  набора в каждой. 

3 Каждой полученной группе приписывается одно из кодовых слов 1/4-кода: {0001, 0010, 0100, 

1000}.  

4 Наборам с номерами 2
t
 – 1 – i приписываются те же кодовые слова 1/4-кода, что и наборам i. 

5 Определяются значения функций логической коррекции g1(X), g2(X), g3(X), g4(X). 

Далее СВК строится в выбранном элементном базисе. 

Представленный подход к синтезу СВК на основе ЛКС с применением 1/4-кода подходит для 

использования с любыми комбинационными составляющими без ограничений на виды реализуе-

мых ими булевых функций. Подход абсолютно новый и ранее не исследовался учеными и инжене-

рами, поэтому требует многочисленных экспериментов и тестирования на реальных объектах, 

обеспечивающих автоматическое протекание технологических процессов в различных секторах 

экономики. Предварительные теоретические выкладки показывают его высокую эффективность в 

части обнаружения ошибок на выходах комбинационных составляющих дискретных устройств. 
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