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Рисунок 3 – Графики зависимости длины lрл от сопротивления изоляции rи: 

1 – Sпг(н), 2 – Sпг(кз), 3 – kн, 4 – kкз 

 

Полученные графики дают возможность определить максимальную длину lрл при нормативном 

минимальном значении сопротивления изоляции rи = 1,0 Ом·км (при частоте несущих колебаний 

сигнала 420 Гц), которая составляет 1,529 км. 
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Автоматизированные системы управления ответственными технологическими процессами (АСУ 

ОТП) на железнодорожном транспорте обеспечивают надѐжное управление объектами инфраструк-

туры, от которых напрямую зависит безопасность движения поездов. К таким объектам относятся 

стрелочные переводы, светофоры и др. 

АСУ ОТП относятся к классу систем повышенной ответственности, где основным критерием 

эффективности является функциональная безопасность (ФБ) – способность сохранять безопасное 

состояние при любых отказах оборудования или ошибках персонала. Наряду с этим, в условиях 

цифровизации возрастает роль информационной безопасности (ИБ), предотвращающей вмешатель-

ство в управляющие и диагностические каналы. 
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Архитектура АСУ ОТП систем железнодорожной автоматики и телемеханики (СЖАТ) построе-

на по иерархическому принципу и включает три уровня: 

1 Нижний (полевой) уровень. Представлен датчиками и исполнительными устройствами: стре-

лочными электроприводами, рельсовыми цепями, счѐтчиками осей, контактными датчиками и бло-

ками ввода-вывода. Эти элементы работают в реальном времени и передают телеметрию в объект-

ные контроллеры. 

Обмен данными осуществляется по промышленным протоколам, использующим физические 

интерфейсы RS-485/422 (скорость 9,6–115 кбит/с, расстояние до 1,2 км), например Modbus RTU, 

CAN, IEC 60870-5-101/104. Для отказоустойчивости применяются дублированные каналы связи (до 

2 независимых линий) и кольцевые топологии, позволяющие восстановить обмен менее чем за 

50 мс при обрыве одного сегмента. 

2 Средний (управляющий) уровень. Основной функциональный уровень, реализующий логику 

управления и диагностики. Он включает микропроцессорные системы централизации (МПЦ), авто-

блокировки (САБ), системы линейной телемеханики (СЛТ), а также устройства энергоуправления. 

Здесь формируются маршруты, выполняются взаимные блокировки, контролируется занятость 

участков пути, осуществляется самодиагностика и обработка сигналов. 

Управляющие контроллеры реализуют архитектуры типа 1oo2 (один из двух) или 2oo3 (два из 

трѐх), что обеспечивает допустимую интенсивность опасного отказа на уровне 10⁻⁸–10⁻⁹ 1/ч – менее 

одного опасного сбоя за 10000 лет непрерывной работы. Для всех компонентов обязательна серти-

фикация по уровням УПБ 3, УПБ 4 (EN 50129, МЭК 61508). 

3 Верхний (диспетчерский и серверный) уровень. Отвечает за визуализацию технологических 

процессов, архивирование данных и обмен информацией с системами управления движением поез-

дов и технической диагностики. На данном уровне функционируют автоматизированные рабочие 

места (АРМ) операторов, дежурных по станции и инженерно-технического персонала, обеспечива-

ющие взаимодействие человека с системой управления.  

Через АРМ осуществляются мониторинг состояния оборудования, отображение предупрежде-

ний, анализ архивных данных и формирование отчѐтности. Управляющие воздействия формируют-

ся и исполняются на уровне объектных контроллеров, сертифицированных на соответствие требо-

ваниям функциональной безопасности (УПБ), тогда как верхний уровень выполняет функции 

наблюдения, анализа и поддержки принятия решений. 

Передача данных между уровнями осуществляется по выделенным оптоволоконным линиям 

(скорость 100 Мбит/с–1 Гбит/с), радиорелейным или VPN-каналам с криптографической защитой. 

АСУ ОТП железнодорожного транспорта характеризуются: 

1) работой в реальном времени – задержка реакции не превышает 1 с; 

2) принципом fail-safe – любой отказ приводит к безопасному состоянию (например, закрытию 

сигналов); 

3) долговечностью оборудования – срок службы до 10–15 лет, наработка на отказ более                       

10⁶ часов; 

4) распределѐнной структурой – станции и перегонные блоки соединены линиями длиной до 10–

20 км; 

5) жѐсткой нормативной регламентацией – EN 50126/50129, МЭК 61508, отраслевые требова-

ния ЖД. 

Эти особенности диктуют необходимость комплексного обеспечения функциональной и инфор-

мационной безопасности, согласованного на всех уровнях системы. 

Функциональная безопасность направлена на предотвращение перехода системы в опасное со-

стояние при возникновении отказов оборудования, сбоев связи или ошибок оператора. 

Основные методы: 

1 Принцип fail-safe. При потере связи с контроллером все светофоры устанавливаются в запре-

щающее положение, маршруты фиксируются, стрелки блокируются. Вероятность того, что отказ не 

приведѐт к безопасному состоянию, – не более 10⁻⁹ 1/ч. 

2 Архитектуры дублирования. Используются схемы 1oo2 и 2oo3, при этом вероятность ошибоч-

ного решения снижается на 99 %, а вероятность скрытого отказа не превышает 10⁻⁷. Модули часто 

выполняются аппаратно- и программно-разнородными (разные микроконтроллеры, компиляторы, 

логика). 
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3 Непрерывная самодиагностика. Каждый модуль выполняет проверку исправности памяти, ин-

терфейсов и логики выполнения программы с периодичностью 10–500 мс. Для этого могут быть 

использованы следующие методы: 

– «бегущего нуля» и «бегущей единицы» – позволяют выявить до 95–98 % аппаратных неис-

правностей памяти (залипания битов, деградацию ОЗУ); 

– CRC-контроля кода и данных – обеспечивают вероятность недетектирования случайных иска-

жений порядка 10
–7

; 

– сравнения контрольных сумм программ с эталоном при старте (проверка выполняется за 50–

100 мс), и фоновой самопроверки (background check) – позволяют выявлять «мягкие» ошибки ПЗУ и 

ОЗУ с вероятностью до 99 %; 

4 Многоканальная обработка информации в нескольких вычислительных модулях. Несоответ-

ствие результатов между дублируемыми контроллерами обнаруживается за время менее 10 мс. При 

этом активируется диагностический режим и формируется сообщение в вышестоящую систему. 

5 Журналирование событий. Каждое изменение состояния, отказ или ручное вмешательство 

фиксируются во внутренней энергонезависимой памяти. 

6 Верификация и валидация ПО. Программное обеспечение проходит многоступенчатую про-

верку: формальная спецификация требований, моделирование логики, анализ временных задержек, 

имитация отказов и сертификация. 

Таким образом, ФБ реализуется как комплексная система диагностики, контроля и многоканаль-

ной обработки информации, обеспечивающая гарантированное безопасное состояние при любых 

нарушениях нормальной работы. 

Переход на цифровые протоколы и IP-сети в телемеханике создал новые векторы угроз. Нару-

шение целостности телесигналов или подмена управляющих команд может привести к сбоям с тя-

жѐлыми последствиями. Поэтому ИБ стала неотъемлемой частью проектирования АСУ ОТП. 

Основные направления защиты: 

1 Сегментация сетей и изоляция контуров. Технологическая сеть управления изолируется от 

корпоративной. Взаимодействие между сегментами разрешено только через шлюзы с межсетевыми 

экранами и демилитаризованными зонами (DMZ). Наличие DMZ позволяет снизить риск несанкци-

онированного доступа. 

2 Аутентификация и управление доступом. Реализуются ролевое разграничение прав (3–5 уров-

ней доступа), двухфакторная авторизация операторов, централизованное ведение учѐтных записей. 

Использование аппаратных ключей снижает вероятность возникновения компрометации. 

3 Криптографическая защита каналов. Передача данных между станциями и диспетчерскими 

пунктами осуществляется с использованием алгоритмов шифрования. Нагрузка на процессор при 

шифровании практически отсутствует, что не влияет на реальное время управления. 

4 Контроль целостности и самопроверка данных. Для обнаружения случайных или злонамерен-

ных изменений пакетов используется CRC-контроль каждого сообщения, обеспечивающий вероят-

ность необнаружения ошибки порядка 10
–7
. Обмен тестовыми «сердечными» пакетами (heartbeat) 

выполняется каждые 1–2 с для подтверждения активности узлов; отсутствие определенного количе-

ства сигналов подряд инициирует аварийный режим. 

5 Мониторинг и реагирование. Системы сбора событий безопасности способны анализировать 

большое количество событий за короткий промежуток времени и оповещать персонал при аномали-

ях трафика. 

6 Физическая защита. Шкафы телемеханики, серверные помещения и кабельные каналы обору-

дуются средствами контроля доступа и сигнализацией вскрытия. 

7 Аудит и тестирование. Проводимые проверки целостности ПО и анализа уязвимостей снижа-

ют риск эксплуатации уязвимостей. 

Комплексное применение этих мер позволяет свести к минимуму вероятность несанкциониро-

ванного вмешательства и нарушения целостности данных. 

Функциональная и информационная безопасность взаимосвязаны: нарушение целостности дан-

ных способно спровоцировать опасное состояние, а чрезмерное усложнение защиты может нару-

шить временные параметры управления. 

В современных АСУ ОТП реализуется координированный подход, при котором: 

1) критические команды передаются по изолированным каналам с задержкой не более 5 мс [1]; 
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2) проверка целостности и аутентичности данных выполняется в основном программно с ис-

пользованием оптимизированных алгоритмов, что минимизирует задержки в цикле управления; 

3) системы мониторинга ИБ интегрируются с подсистемами самодиагностики ФБ, формируя 

единое пространство управления рисками; 

4) совместная реализация позволяет снизить интенсивность опасных отказов вида (технический 

отказ + кибервоздействие) до уровня порядка 10
-9 
1/ч. 

Автоматизированные системы управления ответственными технологическими процессами же-

лезнодорожного транспорта являются фундаментом безопасного функционирования всей отрасли. 

Их архитектура сочетает дублированные каналы управления, принципы fail-safe и механизмы ки-

берзащиты. 

Функциональная безопасность достигается дублированием, диагностикой и контролем целост-

ности, а информационная – сегментацией, шифрованием, CRC-контролем и мониторингом событий. 

Современные тенденции направлены на интеграцию этих направлений в единую платформу управ-

ления безопасностью, обеспечивающую устойчивость железнодорожной автоматики к техническим 

отказам и киберугрозам. 
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В условиях цифровой трансформации транспортной отрасли проблема защиты от кибератак с 

использованием социальной инженерии приобретает особую актуальность. До 74 % успешных ки-

бератак связаны именно с человеческим фактором [1]. Транспортная инфраструктура относится к 

критически важным объектам, где он становится ключевым элементом системы безопасности. 

Успешность атак с использованием социальной инженерии на транспортные компании прежде все-

го связана с методами социальной инженерии, что обусловлено спецификой отрасли: высоким 

уровнем стресса, необходимостью оперативного принятия решений и сложными многоуровневыми 

коммуникациями. Вопреки всеобщему мнению эффективность этих атак зависит не только от уров-

ня подготовки атакующего, но и от различных характеристик жертвы. 

Американский психолог Роберт Чалдини в своей книге «Психология влияния» описывает шесть 

принципов влияния, которыми успешно пользуются мошенники во время своих атак. К ним отно-

сятся авторитет, привлекательность, срочность или дефицит, постоянство и последовательность, 

социальное доказательство, взаимность [2]. 

Современные подходы к обеспечению кибербезопасности в основном сосредоточены на техни-

ческих средствах защиты. Эти методы зачастую не учитывают человеческий фактор, который оста-

ется наиболее уязвимым звеном в системе безопасности. Технические средства не могут полностью 

защитить от социальной инженерии, направленной на манипуляцию персоналом. Существующие 

системы обучения и тестирования сотрудников также имеют ограниченную эффективность, по-

скольку не учитывают индивидуальные особенности восприимчивости к манипуляциям. 

Предложенная методология оценки уязвимости основана на аппарате теории нечетких мно-

жеств Заде. Математическая модель включает четыре ключевых компонента: возрастные характе-

ристики, уровень образования, показатели цифровой грамотности и психологические особенности. 

Для каждого параметра разработаны функции принадлежности μ, отражающие степень уязвимости 

сотрудника: 


