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Из зависимости (см. рисунок 3) следует, что при увеличении загрузки среднее значение эквива-

лентных напряжений на наружной поверхности ступицы цельнокатаного колеса возрастает. 

Следующим шагом для верификации полученной в результате моделирования зависимости,                        

является проведение экспериментальной напрессовки колеса на ось с дальнейшим еѐ нагружением 

с регистрацией эквивалентных напряжений с помощью разработанного ранее устройства [4]. 
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Введение. Мониторинг геометрических параметров трещины (ширины, глубины, площади) в 
процессе разрушающих механических испытаний является важным этапом фрактографического 
исследования конструкционных материалов. К сожалению, традиционные методы анализа кинетики 
трещинообразования весьма трудоемки и нуждаются в автоматизации.  

Целью исследования является разработка методики и программного обеспечения автоматизи-
рованного определения геометрических параметров трещины на основе анализа видеоизображений 
с возможностью интеграции с данными, получаемыми в программном обеспечении современных 
испытательных машин.  

В работе использована оригинальная методика фрактографического исследования в виде про-
граммного приложения на языке Python с привлечением библиотек компьютерного зрения (OpenCV, 
NumPy, Pandas, Tkinter).  

Разработанная компьютерная программа предназначена для обработки видеоизображений в 
форматах MP4, AVI, MOV и *.raw-файлов программного обеспечения испытательной машины, со-
держащих параметры испытаний (ширину образца, количество циклов нагружения и т. д.). 

Общее описание работы программы 
1 Загрузка данных. Пользователь загружает видеофайл и *.raw-файл через графический интер-

фейс (кнопки «Загрузить видео», «Загрузить RAW файл»). Видео копируется в буферную директо-
рию (./predict/buffer_video), а *.raw -файл преобразуется для извлечения параметров образца.  

2 Извлечение кадров. Видеозапись разбивается на отдельные кадры (PNG-изображения), сохра-
няемые в файле ./data/frames).  

3 Калибровка масштаба. Ширина образца в пикселях рассчитывается путем трассировки лучей 
от фиксированной точки до контура образца в первом кадре. По известной ширине в миллиметрах 
определяется коэффициент масштабирования.  

4 Анализ трещины. Для каждого кадра выполняются следующие действия. 
4.1 Создается маска образца в HSV-цветовом пространстве (рисунок 1, а). 
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4.2 Для поиска краев трещины проводятся лучи от двух статических точек с угловым сканиро-
ванием в диапазоне ±90° (рисунок, 1, б).  

4.3 Определяется наиболее глубокая точка трещины, как наиболее удаленная от линии, соеди-
няющей края трещины (рисунок 2, а).  

4.4 Рассчитывается центр трещины и ее площадь путем заливки области между краями и наибо-
лее глубокой точкой (рисунок 2, б).  

5 Обработка разрыва. Программа фиксирует кадр разрыва, когда глубина трещины становится 
равной ширине образца.  

6 Сохранение результатов. Параметры трещины (ширина, глубина, площадь в пикселях и мил-
лиметрах) сохраняются в виде Excel-файла. Дебаг-изображения (маски, лучи, области трещины) 
сохраняются в ./data/frames_debug для визуального контроля.  
 

          а)            б) 
 

   
 

Рисунок 1 – HSV маска (а) и маска с рейтресингом (б) 
 

          а)                               б) 
 

      
 

Рисунок 2 – Зона развития трещины с выделением глубины и ширины (а) и плошади (б) 
 

Программа была протестирована на нескольких видео (среднее значение – около 1000 кадров) 
разрушающих испытаний полимерных материалов, в частности, АБС-пластиков. Установлено, что 
обработка одного кадра занимает ~3–4 с, а точность измерений определяется калибровкой (±5 %) и 
качеством видеосъемки (рекомендуемое разрешение – от 720 p). 

Особенности и преимущества разработанной методики:  
– автоматизация трудоемких элементов фрактографического анализа (исключение субъективно-

сти ручных измерений, интеграция с данными испытательной машины); 
– повышение точности анализа (калибровка по ширине образца обеспечивает погрешность                           

±5 %, что ниже, чем при использовании визуальных методов; 
– универсальность (применимость к испытаниям любых материалов при наличии видео и *.raw-

данных. 
Заключение. Разработанная методика и программное обеспечение обеспечивают эффективный 

и точный анализ геометрических параметров трещины в процессе механических испытаний кон-
струкционных материалов. Совершенствование разработки предполагает применение алгоритмов 
машинного обучения для более глубокого анализа и прогнозирования разрушения с адаптацией под 
высокоскоростные видеокамеры и другие средства измерения.  
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Резинокордная муфта (РКМ) локомотива обеспечивает передачу крутящего момента от тягового 

двигателя к осевому редуктору путем соединения вала двигателя и шестерни редуктора [1]. Ис-

пользование упругой муфты позволяет скомпенсировать несоосность соединяемых валов, посколь-

ку допускает некоторый излом и перекос их осей. Кроме того, наличие резинокордного элемента 

дает возможность снижения ударных нагрузок, возникающих в деталях привода в процессе движе-

ния [2]. РКМ применяются на электропоездах серий ЭР, ЭД, ЭП советского и российского произ-

водства, а также на некоторых локомотивах с гидравлической передачей для соединения элементов 

силовых и вспомогательных приводов, обладающих мощностью от 15 до 770 кВт [3]. 

При осмотрах выявляются такие повреждения РКМ, как трещины в поверхностном слое резины, 

доходящие до кордного слоя, разрыв резинокордного слоя вместе с капроновым кордом в районе 

крепления к металлическим частям (рисунок 1), износ поверхностного слоя резины до стального 

корда под фланцами крепления. Анализ статистической информации об эксплуатации 177 секций 

тягового подвижного состава в локомотивных (моторвагонных) депо показал, что в течение 2024 года 

зафиксировано 39 случаев разрушения болтов крепления РКМ и 26 – повреждения резинокордного 

слоя. Аналогичная ситуация наблюдалась при эксплуатации РКМ и на Латвийской железной дороге [4]. 

В подавляющем большинстве случаев повреждения болтов крепления наблюдаются у фланца тяго-

вого редуктора, а резинокордного слоя – со стороны тягового электродвигателя. Выход из строя 

РКМ приводит к остановке тягового подвижного состава на внеплановый ремонт, связанный с 

необходимостью разбора тяговой передачи. 
 

 
Рисунок 1 – Разрыв резинокордного слоя вместе с капроновым кордом 
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