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Как видно из данных, приведенных на рисунке 1, наиболее высокие значения по механическим 

свойствам получены при обработке металла комплексным модификатором FeVAlCa по вариантам 

4, 5 и 6. Вариант 6 не соответствует по твердости требованиям ГОСТ 22703-2012, поэтому опти-

мальным представляется вариант 5. Результаты исследования показали, что при ковшовой обработ-

ке стали марки 20ГЛ с комплексным модификатором – FeVAlCa при добавлении 0,18  % от массы 

жидкого металла и содержании ванадия [V] = 0,035 %, повышаются механические свойства: вре-

менное сопротивление – до 33 %, предел текучести – до 20,5 %, твердость – до 26 %, особенно –

значение ударной вязкости – в 2 раза больше, чем по варианту 1 традиционной технологии [2]. 

Внедрение предложенной технологии позволило существенно повысить качество корпуса авто-

сцепки, улучшить его механические и эксплуатационные характеристики, а также усовершенство-

вать макро- и микроструктуру металла по сравнению с традиционной технологией. 
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Для оценки влияния загрузки вагона на эквивалентные напряжения на поверхности ступицы 

цельнокатаного колеса к разработанной модели [1] при значениях натяга по границам рекомендо-

ванного диапазона [2] (0,10 и 0,25 мм) прикладывалась нагрузка от 1,5 до 16 тонн с шагом в                 

1,5 тонны. 

Расположение 8 сечений, в которых определялись эквивалентные напряжения и в дальнейшем 

находилось их среднее значение для каждого из сечений, приведено на рисунке 1. 

 

Рисунок 1 – Расположение сечений на поверхности ступицы колеса 

 

На рисунке 2 представлены результаты расчѐта модели (эквивалентные напряжения и контактное 

давление в зоне сопряжения ступицы с подступичной частью оси) при статической нагрузке на шейку 

оси вагона, равной 16,5 тонны при натягах 0,1 и 0,25 мм. 
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Рисунок 2 – Результаты расчѐта эквивалентных напряжений и контактного давления в сопряжении 

ступицы цельнокатаного колеса с подступичной частью оси колѐсной пары при нагрузке, равной 16,5 т.:                                                                                                                                     
а – натяг 0,10 мм; б – натяг 0,25 мм 

 

Для определения величины натяга в соединении δ по эквивалентным напряжениям (ζtП)), возни-

кающим на поверхности ступицы колеса, используется зависимость, которая вытекает из решения 

Ляме – Гадолина [3]: 
2
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где d1 – диаметр сопряжения, мм; d2 – наружный диаметр охватывающей детали, для каждого                  

рассматриваемого сечения, мм; E – модуль упругости, МПа. 

При использовании результатов расчѐтов модели без учѐта прикладываемой нагрузки [1] в каче-

стве «нуля» получено влияние загрузки на изменение среднего значения эквивалентных напряже-

ний на наружной поверхности ступицы колеса (рисунок 3). 

 
 

Рисунок 3 – Влияние загрузки вагона на величину среднего значения эквивалентных напряжений  

на наружной поверхности ступицы цельнокатаного колеса (y = 0,0018x2 – 0,0044x + 0,0286, R² = 0,9908) 

б) 

а) 
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Из зависимости (см. рисунок 3) следует, что при увеличении загрузки среднее значение эквива-

лентных напряжений на наружной поверхности ступицы цельнокатаного колеса возрастает. 

Следующим шагом для верификации полученной в результате моделирования зависимости,                        

является проведение экспериментальной напрессовки колеса на ось с дальнейшим еѐ нагружением 

с регистрацией эквивалентных напряжений с помощью разработанного ранее устройства [4]. 
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Введение. Мониторинг геометрических параметров трещины (ширины, глубины, площади) в 
процессе разрушающих механических испытаний является важным этапом фрактографического 
исследования конструкционных материалов. К сожалению, традиционные методы анализа кинетики 
трещинообразования весьма трудоемки и нуждаются в автоматизации.  

Целью исследования является разработка методики и программного обеспечения автоматизи-
рованного определения геометрических параметров трещины на основе анализа видеоизображений 
с возможностью интеграции с данными, получаемыми в программном обеспечении современных 
испытательных машин.  

В работе использована оригинальная методика фрактографического исследования в виде про-
граммного приложения на языке Python с привлечением библиотек компьютерного зрения (OpenCV, 
NumPy, Pandas, Tkinter).  

Разработанная компьютерная программа предназначена для обработки видеоизображений в 
форматах MP4, AVI, MOV и *.raw-файлов программного обеспечения испытательной машины, со-
держащих параметры испытаний (ширину образца, количество циклов нагружения и т. д.). 

Общее описание работы программы 
1 Загрузка данных. Пользователь загружает видеофайл и *.raw-файл через графический интер-

фейс (кнопки «Загрузить видео», «Загрузить RAW файл»). Видео копируется в буферную директо-
рию (./predict/buffer_video), а *.raw -файл преобразуется для извлечения параметров образца.  

2 Извлечение кадров. Видеозапись разбивается на отдельные кадры (PNG-изображения), сохра-
няемые в файле ./data/frames).  

3 Калибровка масштаба. Ширина образца в пикселях рассчитывается путем трассировки лучей 
от фиксированной точки до контура образца в первом кадре. По известной ширине в миллиметрах 
определяется коэффициент масштабирования.  

4 Анализ трещины. Для каждого кадра выполняются следующие действия. 
4.1 Создается маска образца в HSV-цветовом пространстве (рисунок 1, а). 


