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образующие с железом твердые растворы внедрения, обеспечивают наиболее значительный эффект 

упрочнения феррита, что в основном обусловлено их сильным взаимодействием с дислокациями и 

закреплением последних [8]. 

На прочность феррита сильно влияет размер его зерна. С измельчением зерна феррита одновре-

менно с дополнительным упрочнением снижается температура вязко-хрупкого перехода [8].  

Таким образом, измельчение зерен феррита является эффективным способом упрочнения, по-

скольку одновременно уменьшается склонность к хрупкому разрушению. 

Вязкость сталей с ферритно-карбидной структурой увеличивается при измельчении перлитных 

колоний и зерен феррита. Эти структурные параметры существенно зависят от размера аустенитного 

зерна. Поэтому для получения высокой степени механических свойств при проведении термиче-

ской обработки стремятся получить мелкое аустенитное зерно [8].  

Испытания показывают, что структура стали с минимальным содержанием вредных примесей и 

оптимальной легирующей системой обеспечивает высокий уровень прочности и эксплуатационной 

надежности. Таким образом, эффективное управление химическим составом и технологиями моди-

фицирования стали позволяет получить оптимальные механические характеристики, необходимые 

для надежной и безопасной эксплуатации деталей подвижного состава. 
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Неметаллические включения по природе происхождения разделяются на два вида: 

1) эндогенные включения – образуются в результате химических реакций в процессе выплавки, 

раскисления, разливки, а также при кристаллизации вследствие изменения растворимости элементов; 

2) экзогенные включения – соединения, попавшие в сталь из шихтовых и огнеупорных материа-

лов. Эти включения также могут образовать комплексные соединения [1]: 
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При T = 1600 °C константа равновесия KMnS = 0,98 и 1/ МnS
1.K  Для стали с содержанием марганца 

1,1–1,4 % произведение концентраций марганца и серы     Mn × S  намного ниже 1/ KMnS. Следова-

тельно, в условиях сталеплавильных процессов в жидком металле сульфиды марганца образовываться 

не могут. 

На рисунке 1 представлена стандартная энергия образования оксида и сульфида марганца. 

 
 

Рисунок 1 – Зависимость стандартной энергии образования оксида и сульфида марганца от температуры 

 

Образование оксида марганца более термодинамически выгодно, чем сульфида 
0 0

МnO МnS
( ).G G   Образование сульфида марганца возможно при низком содержании кислорода в 

стали.  

Рисунок 2 показывает образование оксида и сульфида марганца с содержанием марганца в ста-

ли 1,15 %. 

 
 

Рисунок 2 – Образование соединений марганца в стали 

 

Из рисунка 2 видно, что содержание кислорода во время кристаллизации при температуре ~1473 К 

должно быть не более 3,1 ppm, чтобы марганец с содержанием 1,15 % эффективно связывал ~0,023 % 

серы. Это очень низкое содержание кислорода, достижимое в условиях глубокого раскисления: 
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При T = 1600 °C, константа равновесия 
FeS

0,091K   и FeS
1/ 11.K   Следовательно, в условиях 

сталеплавильных процессов в жидком металле сульфиды железа образовываться не могут. Во время 

кристаллизации и охлаждения стали вследствие понижения растворимости сера выделяется из рас-

твора в виде включений сульфидов FeS или оксисульфидов FeS–FeO [2]. 

Равновесие железо – марганец – сера описывается реакцией 
 

 FeS + Mn = MnS + Fe.  (7) 
 

Температурная зависимость в интервале 1100–1190 °C представлена уравнением [2] 
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Например, при концентрации марганца 1,1–1,4 % отношение 
MnS FeS

/a a  в сульфидной фазе при 1200 °C 

составляет 15–20. При 1100 °C – 33–42. При понижении температуры отношение активности сульфида мар-

ганца к активности сульфида железа увеличивается, марганец связывает серу. Также с повышением концен-

трации марганца увеличивается активность сульфида марганца. 

Ослабление вредного действия серы, которое достигается в присутствии марганца, связано с образовани-

ем MnS при охлаждении стали [3]:  
 

     0

4
Al N AlN;                                     277700 120,43 .G T       (9) 

 

0

4

AlN

277700 120, 43 14529,38
lg 6,3.

2,3 2,3 8,31

G T
K

RT T T

  
     

 
 (10) 

 
       

AlN

AlN

Al N Al N

1 1
.

Al N Al N

a
K

a a f f
  

    
 (11) 

 

При T = 1600 °C константа равновесия 
AlN

28,66K   и 
AlN

1/ 0,035.K   Для стали с содержанием 

алюминия в количестве 0,02–0,06 % произведение концентраций алюминия и азота     Al N  

намного ниже 
AlN

1/ .K  Следовательно, в условиях сталеплавильных процессов в жидком металле 

нитриды алюминия образовываться не могут. 
При введении алюминия в сталь для раскисления (0,02–0,06 % Al) удаление включений нитрида 

алюминия происходить вообще не может, поскольку образуются они только в твердом металле [4]. 
На рисунке 3 представлено образование нитрида и оксида алюминия с содержанием алюминия 

0,040 % в стали. 
Из рисунка 3 видно, что после затвердевания по мере охлаждения стали при температуре ~1400 К 

алюминий с содержанием 0,040 % связывает ~51 ppm азота. При этом концентрация кислорода 
должна быть не более ~0,001 ppm. 

 
 

Рисунок 3 – Образование соединений алюминия в стали 
 

 

Конструкционные стали практически всегда раскисляются алюминием, который обеспечивает зна-

чительно более низкое содержание кислорода в металле (0,003–0,005 %). Кроме того, алюминий связы-

вает растворенный азот в стали, в результате чего можно получить наследственно мелкозернистую 

структуру. Получение мелкозернистой структуры является эффективным средством упрочнения стали 

и повышения ее сопротивляемости разрушению [5]. На рисунке 4 представлена стандартная энергия 

образования соединений алюминия. 
 

 
 

Рисунок 4 – Зависимость стандартной энергии образования соединений алюминия от температуры 

Т 
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Из рисунка 4 видно, что 
2 3 2 3

0 0 0

Al O AlN Al S
,G G G      образование оксида алюминия термодинами-

чески более выгодно, чем образование нитрида и сульфида алюминия: 
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При T = 1600 °C константа равновесия 8

CaS
2,24 10K    и 8
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1/ 0,44 10 .K


   Для стали с содер-

жанием кальция 0,0001 % произведение концентраций кальция и серы       Ca S  намного выше 

CaS
1/ .K  Следовательно, в условиях сталеплавильных процессов в жидком металле образуются 

сульфиды кальция. 

На рисунке 5 показано взаимодействие кальция с кислородом и серой. 

 
 

Рисунок 5 – Образование оксида и сульфида кальция в стали 

 

Кальций является летучим и реакционноспособным элементом, что обеспечивает его низкую 

растворимость в стали. Из графика (см. рисунок 5) видно, что при температуре 1600 °C, для равно-

весного образования CaS, кальций с содержанием 50 ppm связывает примерно 0,011 ppm серы. При 

этом содержание кислорода должно быть примерно [O] ≤ 0,00054 ppm. На рисунке 6 представлена 

стандартная энергия образования соединений кальция в стали. 

 
 

Рисунок 6 – Зависимость стандартной энергии образования соединений кальция от температуры 

 

Из термодинамических данных можно увидеть, что отрицательное значение стандартной энер-

гии Гиббса реакции образования сульфида кальция говорит о том, что кальций имеет высокую тер-

модинамическую склонность к связыванию серы. Однако 0 0

CaO CaS
G G    что способствует активно-

му связыванию кальция и кислорода. Поэтому при избытке кислорода кальций сначала образует 

оксид. После глубокого раскисления, при очень низком содержании кислорода, образуется сульфид 

кальция в стали. 
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Образование неметаллических включений в стали – неизбежный процесс, поэтому необходимо 

более тщательное удаление их из расплава или перевод из «опасных» во включения с нейтральны-

ми характеристиками. 
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Производство качественных стальных отливок ответственного назначения сопряжено с необхо-

димостью строгого соблюдения температурного режима процесса разливки. Снижение температу-

ры металла во время транспортировки и заливки в форму приводит к значительным тепловым поте-

рям, что является одной из основных причин возникновения таких дефектов, как недоливы, спаи, 

усадочные раковины и повышенная газонасыщенность [1, 2]. Особенно остро эта проблема стоит 

при разливке крупногабаритных отливок, таких как «боковая рама» вагона, где время между вы-

пуском металла из печи и окончанием заливки может быть значительным [3, 4]. 

Эффективным технологическим приемом, направленным на минимизацию теплопотерь с от-

крытой поверхности металла в изложнице или ковше, является применение теплоизоляционных 

смесей (ТИС). Формируя на поверхности расплава защитный теплоизоляционный слой, ТИС поз-

воляют поддерживать температуру металла в заданном технологическом интервале, что напрямую 

влияет на повышение качества отливок и экономию энергоресурсов [5]. ТИС применяются в виде 

порошка (пудры) или гранул, что обеспечивает равномерное распределение по поверхности метал-

ла и формирование сплошного изолирующего слоя (рисунок 1). 
 

 
 

Рисунок 1 – Общий вид ТИС на поверхности жидкого металла 


