Таким образом, принятая номенклатура расходов не способствует объективной экономической оценке работы как отдельных ПКО, так и затрат дороги в целом, связанных с коммерческим осмотром вагонов в поездах.

В экономической оценке работы ПКО также должны найти отражение:

- затраты, вызванные простоем вагонов под операциями коммерческого осмотра;
- убытки народного хозяйства в целом от замедления в продвижении товарной массы на колесах.

Суммированная экономическая оценка в сочетании с показателями качества коммерческого осмотра [1] позволяет оценить результативность использования трудовых, материальных и финансовых ресурсов на пунктах коммерческого осмотра для целей обеспечения безопасности движения и сохранности перевозимых грузов.

Как показывают исследования, выполненные в НИЛ «Грузовая, коммерческая работа и тарифы», затраты трудовых ресурсов на ПКО зависят от ряда факторов. Это, прежде всего, объем работы (количество осмотренных вагонов), среднее количество вагонов в поезде, состав поезда по роду и состоянию вагонов, разный удельный вес в составе поезда вагонов с большими или меньшими трудозатратами на их обслуживание коммерческим осмотром. Перечисленные факторы не зависят или весьма мало зависят от оцениваемого ПКО, их можно отнести к числу объективных. С другой стороны, затраты трудовых ресурсов зависят от принятой технологии работы ПКО, технического обеспечения и обученности работников. Это – субъективные факторы. Характерный пример: на станции Гомель в смене работают 2 старших приемосдатчика-диспетчера, на станции Барановичи-Центральные — 1; производительность старшего приемосдатчика-диспетчера на станции Барановичи-Центральные в 3,2 раза больше, чем на станции Гомель; во многом это результат внедрения АРМа старшего приемосдатчика-диспетчера.

Официальным действующим документом, регламентирующим численность работников ПКО, являются «Нормативы численности приемосдатчиков груза на станциях железных дорог» издания

1977 года. Естественно, положения названного документа устарели.

НИЛ «Грузовая, коммерческая работа и тарифы» в настоящее время по заказу Белорусской железной дороги завершает разработку методики по определению нормативов численности работников пунктов коммерческого осмотра. В основу методики положена количественная характеристика составов поездов, обслуживаемых коммерческим осмотром, с учетом их величины, состава поездов по роду и состоянию вагонов, установленные хронометражными наблюдениями затраты времени на коммерческий осмотр вагонов с учетом перевозимого груза. Количественные характеристики получены на основе исходных данных, предоставленных станциями дороги и обработанных по правилам математической статистики.

Разрабатываемая методика учитывает местные условия работы ПКО на разных станциях дороги, уровень технического вооружения, действующую технологию, передовую практику организации коммерческого осмотра вагонов в поездах, использование средств вычислительной техники.

СПИСОК ЛИТЕРАТУРЫ

1 Разработка типового технологического процесса пункта коммерческого осмотра вагонов на станциях дороги: Отчет о научно-исследовательской работе № 2279 / Под рук. И. А. Елового. — Гомель: БелГУТ, 2001. — 77с.

УДК 656.2.078.002.7

ОЦЕНКА ВЛИЯНИЯ НЕОПРЕДЕЛЕННОСТИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ НА ПОКАЗАТЕЛИ РАБОТЫ ТРАНСПОРТНОЙ СИСТЕМЫ

С. В. НЕГРЕЙ

Министерство транспорта и коммуникаций Республики Беларусь

В последние годы значительно возросли требования к доставке грузов точно в срок. Особенно актуальной эта проблема становится для работы транспортных коридоров. Сегодня отсутствуют надежные методики оценки продолжительности доставки грузов в транспортных коридорах и потерь, вызванных нарушением этого показателя.

Наблюдения за работой международных транспортных коридоров показывают, что неопределенность технологических процессов оказывает существенное влияние на продолжительность и сроки доставки грузов.

Учитывая, что отклонения от графиков моментов прибытия и отправления транспортных единиц описываются нормальным законом, то

$$P(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{\left(t - \bar{t}_{\rm rp}\right)^2}{2\sigma^2}},\tag{1}$$

где $\bar{t}_{\rm rp}$ — математическое ожидание момента прибытия (отправления) транспортной единицы; σ — среднее квадратическое отклонение времени прибытия (отправления) транспортной единицы.

Интегральная функция распределения имеет вид

$$F(t) = \frac{1}{\sigma\sqrt{2\pi}} \int_{t}^{-\infty} e^{\frac{-(t-t_{\rm rp})}{2\sigma^2}} dt.$$
 (2)

Из (1) следует, что максимальная ордината соответствует математическому моменту прибытия (отправления) транспортной единицы.

Очевидно, что средняя продолжительность, когда транспортная единица опережает график,

$$t_{i} = \frac{t_{r}}{\int tf(t)dt}$$

$$t_{i} = \frac{-\infty}{t_{r}}$$

$$\int f(t)dt$$

$$-\infty$$
(3)

Аналогично, средняя продолжительность, когда транспортная единица прибывает позже графика,

$$\int_{1}^{\infty} f(t)dt$$

$$t_{1} = \frac{t_{r}}{\infty}$$

$$\int_{1}^{\infty} f(t)dt$$

$$t_{r}$$
(4)

Для нормального закона распределения можно получить конечные решения

$$t_{i} = \bar{t}_{r} - \left(\frac{\sigma}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} : \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \frac{g^{2}}{2} d\theta\right), \tag{5}$$

$$t_1 = \bar{t}_r + \left(\frac{\sigma}{\sqrt{2\pi}} e^{\frac{\chi^2}{2}} : \frac{1}{\sqrt{2\pi}} \int_{\chi}^{\infty} e^{\frac{g^2}{2}} d\theta\right). \tag{6}$$

Исследования показывают, что неопределенность технологических процессов приводит к дополнительным расходам по содержанию подвижного состава, увеличивает расходы на оплату труда поездных бригад, водителей, ухудшает степень использования грузовых терминалов, пограничных переходов, приводит к дополнительным издержкам в сфере производства. В докладе приводятся методики расчета указанных показателей. Предложенные математические модели позволяют повысить эффективность работы транспортных коридоров, снизить энергоемкость перевозочного процесса и повысить качество работы транспорта.

удк 656.21.02.001.5

НЕКОТОРЫЕ АСПЕКТЫ ПОВЫШЕНИЯ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ПРИГОРОДНЫХ ПЕРЕВОЗОК

В. Я. НЕГРЕЙ, М. Н. ЛУГОВЦОВ, В. А. ПОДКОПАЕВ, В. М. КРИВЦОВА Белорусский государственный университет транспорта

Среди проблем крупных городов и агломераций одно из важных мест занимает транспортная и особенно проблема пригородных перевозок, которая в условиях рыночной экономики приобретает острый социальный и макроэкономический характер.

Одним из важнейших путей решения этой проблемы является научное обоснование параметров пригородного движения с целью максимального удовлетворения спроса на перевозки и повышения доходности пригородных перевозок. Это требует решения целого ряда взаимосвязанных задач. В первую очередь, это относится к оптимизации параметров пассажирских комплексов, размеров движения поездов, повышению уровня населенности поездов на основе прогнозных моделей высокой точности, рационального размещения зонных станций и станций пересадки на городской транспорт, что позволит значительно уменьшить потребность в ресурсах и энергии на организацию пригородных перевозок.

В докладе приводится экономико-математическая модель, позволяющая учитывать при оптимизации размеров пригородного движения и количества вагонов в составе интересы транспорта и потребителей его продукции, а также экономическую эффективность, связанную с повышением достоверности информации о пригородных пассажиропотоках, погрешность которой колеблется от 13 % и более (в отдельных случаях до 40 %), и качества принимаемых решений в управлении пригородными перевозками.

Современные процессы урбанизации приводят к тому, что в крупных городах промышленных районов концентрируется значительная часть населения. Подобная концентрация имеет ряд преимуществ по организации транспортного обслуживания населения, однако, с другой стороны, возникают и значительные сложности во взаимодействии различных видов транспорта и взаимосвязанных объектов, входящих в состав пассажирских комплексов (вокзалы, привокзальные площади, транспортно-пересадочные узлы и так далее), которые группируются вокруг важнейших транспортных узлов.

Взаимодействие проявляется в оптимизации числа, размещении и планировке станций пересадки, согласовании пропускной способности отдельных элементов и увязке расписаний движения.

Одним из важнейших вопросов оптимизации процессов взаимодействия железной дороги и городских видов транспорта является комплексное развитие и размещение станций пересадки и транспортно-пересадочных узлов.

Транспортно-планировочные решения развития транспортно-пересадочных узлов необходимо осуществлять, опираясь на научно обоснованную базу проектирования. При развитии транспортно-пересадочных узлов для комплексного учета транспортно-планировочных, социальных и других факторов возникает необходимость в проведении исследований по изучению функционирования транспортно-пересадочных узлов.

В основу методики исследования пассажиропотоков закладывается научная гипотеза, которая заключается в том, что в пересадочных узлах потоки пассажиров формируются из единичных передвижений, которые перерастают в массовые и должны подчиняться законам теории вероятности и математической статистики.

Выявление закономерностей перемещений и формирования пассажирских потоков в узлах взаимодействия железнодорожного и городского видов транспорта требует большого количества обследований. Проведение сплошного обследования (при котором объектом обследования становится каждый пассажир) является мероприятием трудоемким и дорогостоящим. Метод выборочного на-