- 4 **Круглова**, Л. Методы управления дебиторской задолженностью предприятия / Л. Круглова // Финансовый директор. -2017. -№ 4 -C. 14-18.
- 5 **Курганова, О. А**. Основы управления дебиторской задолженностью предприятия / О. А. Курганова // Концепт. 2015. Спецвыпуск № 05. С. 36–40.
- 6 **Раева, И. В**. Совершенствование механизма управления дебиторской задолженностью на предприятии / И. В. Раева, К. В. Разумова. М. : НИЦ ИНФРА-М, 2017.-378 с.

СВЕДЕНИЯ ОБ АВТОРАХ:

- Липатова Ольга Вадимовна, г. Гомель, УО «Белорусский государственный университет транспорта», заведующий кафедрой «Экономика транспорта», канд. экон. наук, доцент;
- Черкасова Екатерина Юрьевна, г. Гомель, Транспортно-логистический центр Минск филиал республиканского логистического унитарного предприятия «БЕЛИНТЕРТРАНС», ekaterinacherkasova0@gmail.com.

УДК 629.4.013

ОЦЕНКА ВЛИЯНИЯ ПРОСТОЯ ВАГОНОВ НА ТЕХНИЧЕСКИХ СТАНЦИЯХ НА ЭКОНОМИЮ ВРЕМЕНИ ОТ ПРОСЛЕДОВАНИЯ ВАГОНА ПО СТАНЦИИ БЕЗ ПЕРЕРАБОТКИ

И. М. ЛИТВИНОВА

УО «Белорусский государственный университет транспорта», г. Гомель

Система организации вагонопотоков в поезда на технических станциях железной дороги характеризуется количеством назначений грузовых поездов, дальностью следования и мощностью вагонопотока. Основным критерием при определении выгодности выделения сквозного назначения является экономия времени на 1 вагон, пропускаемый через попутные технические станции без переработки $t_{3\rm K}$. Норма экономии времени $t_{3\rm K}$ устанавливается для каждой технической станции расчетного полигона плана формирования грузовых поездов (ПФ), участвующей в расчете ПФ. Значительное влияние на величину параметра $t_{3\rm K}$ оказывают технические возможности станции, уровень ее оснащения и технология работы.

Техническая станция, осуществляющая переработку вагонопотоков, представляет собой сложную систему технологически взаимосвязанных элементов (объектов, устройств) для преобразования транспортных потоков в системе организации вагонопотоков в поезда.

Экономия времени $t_{3 \rm K}$ образуется за счет разницы времени пропуска по станции транзитного вагонопотока с переработкой и без переработки,

зависит от процессов по технологическим линиям пропуска этих категорий вагонопотока, использования различных элементов станции при пропуске и переработке вагонопотоков, а также норм времени на выполнение операций с вагонами и поездами.

При сравнительных расчетах по конкретным вариантам ПФ экономия t_{3k} может устанавливаться с учетом изменения суммарного времени нахождения на станции всех вагонов с переработкой и без нее:

$$nt_{\rm pk} = n_{\rm nep} \left(t_{\rm nep} - t_{\rm hak} \right) - n_{\rm Tp} t_{\rm Tp} = n_{\rm nep} \left(t_{\rm nn} + t_{\rm pac\phi} + t_{\rm dopm} + t_{\rm no} \right) - n_{\rm Tp} t_{\rm Tp} ,$$

где $t_{\rm пер}$ — время нахождения на станции транзитного вагона с переработкой соответственно при объеме переработки n, час; $n_{\rm пер}$ — количество вагонов, пропускаемых по станции с переработкой, вагонов в сутки; $t_{\rm нак}$ — время нахождения вагона под накоплением на технической станции при объеме переработки n, час; $t_{\rm пп}$ — время нахождения вагона в парке приема, час; $t_{\rm расф}$ — продолжительность расформирования состава, час; $t_{\rm форм}$ — время от окончания накопления до перестановки (предъявления состава к обработке) состава в парк отправления, час; $t_{\rm по}$ — время нахождения вагона в парке отправления, час; $t_{\rm rp}$ — количество вагонов, пропускаемых по станции без переработки, вагонов в сутки; $t_{\rm rp}$ — время нахождения на станции транзитного вагона без переработки, час.

Характеристика и способы выполнения маневровой работы при переработке вагонопотока на станции значительно влияют на конечные затраты времени нахождения вагонов на станции и как следствие на $t_{3\kappa}$. Кроме того, на продолжительность нахождения на станции транзитных вагонов с переработкой оказывают влияние ожидания выполнения операций, вызванных значительной загрузкой путевых и маневровых ресурсов.

Затраты времени на выполнение операций с вагонами, маневровой работы и продолжительность ожидания выполнения операций в подсистемах станций устанавливают в зависимости от способа выполнения маневровой работы, путевого развития инфраструктуры станций и уровня загрузки инфраструктуры станции пропуском и переработкой вагонопотока.

Зависимость значения экономии времени $t_{\text{эк}}$ устанавливается с учетом времени нахождения вагонов при выполнении каждого процесса переработки:

$$t_{\scriptscriptstyle \rm DK} = f\{t_{\scriptscriptstyle \rm HII}, t_{\rm pop}, t_{\scriptscriptstyle \rm th}, t_{\scriptscriptstyle \rm IIO}, \sum t_{\scriptscriptstyle \rm OK}\}.$$

Элементы простоя вагона на технической станции оказывают различное влияние на экономию времени $t_{3\kappa}$, структура распределения времени нахождения транзитного вагона с переработкой представлена на рисунке 1.

Из данных, представленных на рисунке 1, видно, что значительное влияние на экономию времени от проследования вагона по станции без переработки оказывают простои в парках прибытия и отправления. На значение простоя в парках станции оказывает влияние не только технология обработки составов, но и уровень загрузки подсистемы расформирования. В случае, если загрузка подсистемы расформированияформирования высокая, возникают ожидания расформирования, формирования и, как следувеличивается простой вагона на станции (рисунок 2).

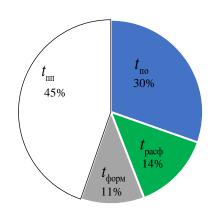


Рисунок 1 — Структура распределения времени нахождения транзитного вагона с переработкой без учета накопления по технической станции БЖД

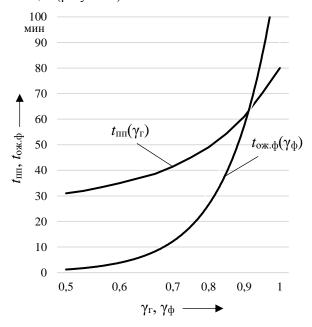


Рисунок 2 — Зависимость времени занятия пути парка приема от загрузки горки и времени ожидания окончания формирования состава от загрузки маневрового локомотива

Из данных видно, что при увеличении загрузки горки до 0,9 время нахождения составов в парке приема значительно возрастает с 30 минут до 61 минуты и изменяется по экспоненциальной зависимости, так же как и время ожидания формирования состава. Следовательно, уровень загрузки подсистем и маневровых ресурсов станций оказывает значительное влияние на простой вагонов на станции и соответственно на экономию времени $t_{2\kappa}$.

При высокой динамике изменения эксплуатационной нагрузки на техническую станцию и объемов сортировочной работы значение $t_{3\kappa}$ может иметь большой диапазон, что в свою очередь существенно влияет на систему организации вагонопотоков в поезда на направлении.

Динамика изменения значения t_{3k} в зависимости от величины времени простоя вагонов с переработкой и эксплуатационной нагрузки на техническую станцию БЧ приведена в таблице 1.

Таблица 1 — Изменение экономии времени от проследования вагона по станции без переработки в зависимости от величины простоя транзитных вагонов с переработкой на технической станции БЧ

Поэлементный простой вагона на станции, ч	Эксплуатационная нагрузка на станцию, вагонов/сутки		
	2565	3135	3705
Простой вагона под операциями обработки в парке приема	0,96	1,16	1,23
Ожидание в парке приема	0,1	0,3	0,36
Расформирование	0,48	0,48	0,48
Накопление	4,47	3,66	3,18
Ожидание окончания формирования	0,2	0,32	0,36
Окончание формирования	0,19	0,19	0,19
Простой вагона под операциями обработки в парке отравления	1,01	1,01	1,01
Ожидание на путях отправления	0,55	0,4	0,22
Простой транзитного вагона с переработкой	7,96	7,52	7,03
Простой транзитного вагона без переработки	1,4	1,4	1,4
Экономия времени от проследования вагона по станции без переработки	2,09	2,46	2,45

Из данных таблицы, видно, что при увеличении эксплуатационной нагрузки на техническую станцию увеличивается простой транзитного вагона с переработкой и соответственно экономия времени от проследования вагона по станции без переработки. Так, при увеличении эксплуатационной нагрузки на станцию на 23 % экономия времени от проследования вагона по станции без переработки возрастает на 18 %.

Таким образом, определение экономии времени от проследования вагона по станции без переработки должно определяться с учетом динамики изменения эксплуатационной нагрузки и уровня загрузки подсистем технической станции.

Список литературы

- 1 Методические рекомендации по организации вагонопотоков на Белорусской железной дороге : утв. приказом № 1294 НЗ от 30.12.2013. Минск : Бел. ж. д., 2013. 320 с.
- 2 **Макриденко**, **А. Б.** Оценка распределения эксплуатационной работы по организации вагонопотоков на технических станциях Белорусской железной дороги / А. Б. Макриденко, Т. В. Пильгун, В. Г. Кузнецов // Вестник БелГУТа: Наука и транспорт. -2018. -№ 2. -C. 23–26.
- З **Литвинова, И. М.** Информационно-аналитическая модель распределения сортировочной работы на станциях Белорусской железной дороги / И. М. Литвинова, В. Г. Козлов // Тихомировские чтения: Инновационные технологии перевозочного процесса: материалы Междунар. науч.-практ. конф., г. Гомель, 20–21 окт. 2019 г. / Белорус. гос. ун-т трансп.; под общ. ред. А. А. Ерофеева. Гомель: БелГУТ, 2019. С. 99–102.
- 4 **Литвинова, И. М.** Многокритериальный подход к распределению сортировочной работы между техническими станциями / И. М. Литвинова // Тихомировские чтения: Синергия технологии перевозочного процесса: материалы Междунар. науч. практ. конф., г. Гомель, 20–21 окт. 2021 г. / Белорус. гос. ун-т трансп.; под общ. ред. А. А. Ерофеева. Гомель: БелГУТ, 2021. С. 235–238.

СВЕДЕНИЯ ОБ АВТОРЕ:

■ Литвинова Ирина Михайловна, г. Гомель, УО «Белорусский государственный университет транспорта», старший преподаватель кафедры «Управление эксплуатационной работой и охрана труда», litvinka77@yandex.by.

УДК 656.225

АНАЛИЗ ТЕХНОЛОГИИ ПЛАНИРОВАНИЯ И УПРАВЛЕНИЯ МАНЕВРОВОЙ РАБОТОЙ НА ЖЕЛЕЗНОДОРОЖНОЙ СТАНЦИИ

А. А. НАУМЕНКО

РУП «Гомельское отделение Белорусской железной дороги»

На железнодорожном транспорте развитие управленческих систем осуществляется с помощью информатизации и автоматизации. Однако информационные системы (далее – $\dot{\text{ИC}}$) и автоматизированные системы управления (далее – $\dot{\text{ACY}}$) в процессе функционирования не только собирают, но и упрощают исходный информационный массив [1].