где $(P_{\rm aN})_{0,95}$ — предел выносливости детали при 0,95 вероятности неразрушения, определяемый расчетным путем; $K_{\rm t}$ — коэффициент, учитывающий «выжигание» дефектных деталей в процессе эксплуатации ($K_{\rm t}=1,0...1,5$); $\psi_{\rm B}$ — коэффициент чувствительности материала и асимметрии цикла ($\psi_{\rm B}=0,05$ — для углеродистых сталей и $\psi_{\rm B}=0,1...0,2$ — для низколегированных сталей); $P_{\rm m}$ — среднее напряжение цикла при усталостных испытаниях; $P_{\rm cp}$ — расчетная вертикальная статическая нагрузка брутто на деталь; $k_{\rm u}$ — коэффициент использования грузоподъемности; $k_{\rm n}$ — коэффициент вертикальной динамики, равный 0,5 для боковых рам и 0,35 для надрессорных балок.

Остаточный ресурс, определенный по предлагаемой методике, не требует дорогостоящих испытаний деталей и обеспечивает большую сходимость со статистическими данными эксплуатации.

УДК 629.4.023.14

РАСЧЕТНАЯ МОДЕЛЬ КУЗОВА ПАССАЖИРСКОГО НЕКУПЕЙНОГО ВАГОНА ДЛЯ ОЦЕНКИ ОСТАТОЧНОЙ НЕСУЩЕЙ СПОСОБНОСТИ

В. И. СЕНЬКО, А. В. ПИГУНОВ

Белорусский государственный университет транспорта

Кузов пассажирского некупейного вагона имеет несущую конструкцию в виде замкнутой подкрепленной тонколистовой оболочки с вырезами. Оболочка выполнена из набора продольных и поперечных элементов жесткости, связанных с обшивкой. Поэтому расчетная схема кузова принималась в виде комбинированной (пластинчато-стержневой) пространственной системы.

При построении модели использовались три типа конечных элементов: пластинчатые 3- и 4- угольные и стержни.

Пластинчатые конечные элементы применялись для моделирования общивки, а также хребтовой, шкворневых, концевых балок, нижних обвязок боковых стен и противоударных стоек торцовых стен. Для всех остальных балок конструкции использовались стержневые конечные элементы с абсолютно жесткими консолями на концах, соответствующими величинам эксцентриситетов.

При моделировании гофрированной обшивки ее плоская часть представлялась как пластина, а гофры - стержнями.

Разработанная модель предназначена для оценки остаточной прочности кузовов, имеющих коррозионные повреждения, поэтому она построена для кузова в целом.

Расчетная модель с достаточной точностью аппроксимирует кузов пассажирского некупейного вагона и позволяет вести расчет для любого вида и сочетания эксплуатационных нагрузок. Параметры расчетной модели следующие: количество узлов – 22112, количество конечных элементов – 33485. Она позволяет производить расчеты для любого вида и сочетания эксплуатационных нагрузок и с учетом любых схем износов.

Как известно, несущая способность конструкции вагона определяется не только прочностью, но и устойчивостью продольных элементов кузова и общивки.

Разработанная расчетная конечно-элементная модель вагона ЦМВО позволяет производить оценку устойчивости общивки боковых стен, настила пола и крыши по следующему алгоритму:

1 Проводится прочностной расчет кузова в целом методом конечных элементов с помощью разработанной конечно-элементной модели.

- 2 Из общей конструкции выделяется конечно-элементная модель боковой стены, настила пола или крыши и в качестве нагрузок для нее принимаются перемещения всех узлов на границах боковой стены с рамой и крышей, полученные при расчете кузова в целом.
- 3 Для полученной системы с использованием метода конечных элементов решается задача устойчивости. Таким образом, разработанная модель позволит оценить остаточную несущую способность кузова пассажирского некупейного вагона по условиям прочности и устойчивости.