УДК 629.4.023.11

Огородников Л.В.¹, Афанаськов П.М.¹, Певнев И.В.¹, Выходцев М.В.¹, Шербатый К.С.²

¹ Белорусский государственный университет транспорта

РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА ПРОЧНОСТИ ИЗМЕНЕННОЙ КОНСТРУКЦИИ РАМЫ ПОД СИЛОВУЮ УСТАНОВКУ И ГИДРОПЕРЕДАЧУ ДИЗЕЛЬ-ПОЕЗДА

Аннотация. Разработана конструкция рамы под новую силовую установку и гидропередачу дизель-поезда типа ДР1Б, представлен сравнительный анализ оригинальной конструкции и модернизируемой. Проанализировано напряженно-деформированное состояние рассматриваемой рамы, разработана схема установки тензорезисторов, проведены натурные испытания на соударение и ходовые прочностные испытания, рассчитан коэффициент запаса сопротивления усталости. Оценено соответствие измененной конструкции рамы нормативным требованиям.

Ключевые слова: прочность, дизель-поезд, моделирование, конструкция.

Ogorodnikov L.V.¹, Afanaskou P.M.¹, Pevnev I.V.¹, Vykhodtsev M.V.¹, Shcherbaty K. S.²

¹ Belarusian State University of Transport

COMPUTATIONAL AND EXPERIMENTAL ASSESSMENT OF THE STRENGTH OF A MODIFIED FRAME DESIGN FOR THE POWER UNIT AND HYDRAULIC TRANSMISSION OF A DIESEL TRAIN

Abstract. A frame design has been developed for a new power plant and hydraulic transmission of a diesel train of the DR1B type, and a comparative analysis of the original design and the modernized one is presented. The stress-strain state of the frame under consideration was analyzed, a scheme for installing strain gauges was developed, full-scale impact tests and running strength tests were carried out, and the fatigue resistance safety factor was calculated. The compliance of the modified frame design with regulatory requirements was assessed.

Keywords: strength, diesel train, modeling, design.

Дизель-поезда типа ДР1Б являются продолжением серии ДР1 с некоторыми доработками. Серия рассматриваемых дизель-поездов была разработана Рижским вагоностроительным заводом. Моторные вагоны оснащены силовым агрегатом М756, это дизельный V-образный, 12 цилиндровый двигатель, разработанный в 1950-х годах [1]. На сегодняшний день существуют сложности с обслуживанием данных силовых агрегатов, ввиду того, что они выработали свой ресурс и зачастую нуждаются в замене. В условиях замены силового агрегата, правильным решением является выбор современного дизеля с улучшенными техническими характеристиками. Стоит отметить то, что способ крепления

² Моторвагонное депо Минск

² Motor car depot Minsk

новой силовой установки, зачастую, отличается и требует замены рамы, на которой размещен дизель.

Оригинальная конструкция рама под силовую установку и гидропередачу дизель-поезда типа ДР1Б выполнена из стали Ст3 и имеет сварную конструкцию. На одной части рамы закреплен силовой агрегат М756, а на второй – устанавливается гидропередача ГДП-1000.

Изменениям подверглась часть рамы под новую силовую установку, так как новы силовой агрегат закрепляется через четыре демпфирующие подушки. В измененной конструкции рамы отсутствует перепад по высоте в месте соединения двух частей рамы, измененная часть выполнена из прямоугольных профильных труб 180х100 с толщиной стенки 8 мм из Стали 20, которая по механическим свойствам близка к стали Ст3. На рис.1 представлен изначальный вид рамы и рама после модернизации.

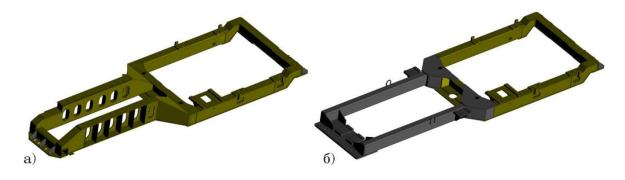


Рис.1. Рама под силовую установку и гидропередачу: a- рама оригинальной конструкции; 6- рама измененной конструкции

Места крепления измененной конструкции рамы под силовую установку и гидропередачу к главной раме кузова вагона дизель-поезда типа ДР1Б сохранены. Одним из критериев соответствия конструкции является недопущение превышения напряжений, полученных расчетным путем и в результате проведения испытаний, допускаемых значений, а также обеспечение безопасносной эксплуатации в течение всего срока службы [2].

Была создана пространственная конечно-элементная модель несущей конструкции измененной рамы. Расчет производился методом конечных элементов. Элементы рамы имитировались объемными параболическими конечными элементами с тремя степенями свободы в каждом узле. В модели учтены: геометрические размеры, места расположения двигателя и гидропередачи (с учетом массы данного оборудования), толщины конструктивных элементов, материал несущей конструкции и схемы нагружения, в том числе силовые граничные условия, приняты в соответствии с [3].

По результатам расчета установлено, что максимальные значения расчетных эквивалентных напряжений, возникающих в несущей

конструкции измененной рамы под силовую установку и гидропередачу дизель-поезда типа ДР1Б, не превышают допускаемых значений. Результаты оценки прочности по одному из режимов нагружения представлены на рис. 2 в виде распределения эквивалентных по Мизесу напряжений (для наглядности распределения значений эквивалентных напряжений, по всей конструкции измененной рамы приведены от 0 до 15 МПа).

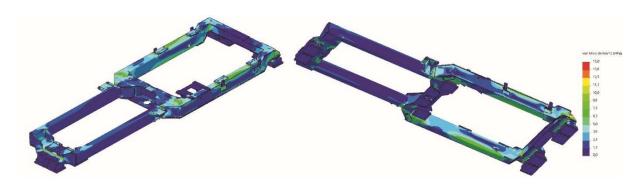


Рис.2. Распределение эквивалентных напряжений (МПа) в раме.

Проведение натурных испытаний по определению характеристик прочности методом тензометрирования невозможно без грамотно разработанной схемы размещения тензорезисторов (контрольных точек) [4]. Схема разрабатывалась в соответствии с проведенными прочностными расчетами в нескольких режимах, а также с учетом опыта специалистов испытательного центра, проводящих испытания сварных рамных конструкций.

Испытаниям на соударение выполнялись путем соударения вагонабойка с испытываемым головным вагоном в груженом состоянии, установленным перед вагонами подпора. Удар проводился в груженом состоянии. Скорость соударения регистрировалась путем измерения времени прохождения вагоном-бойком (тележкой) фиксированного расстояния, а сила соударения — тензометрической автосцепкой. Соударения осуществлялись с постепенным увеличением скорости (силы соударения). Расчетная (максимальная) сила соударения для вагона в соответствии с [3] составляет 2000 кН для передней консоли головного вагона. Заключительный осмотр испытуемой конструкции неисправностей и повреждений не выявлено.

При проведении ходовых прочностных испытаний контролировались динамические напряжения в наиболее нагруженных сечениях элементов измененной рамы. Испытания проводились в груженом состоянии. Требуемый массив экспериментальной информации по исследуемым величинам при ходовых прочностных испытаниях получен путем последовательного набора записей (реализации) процессов при движении дизель-поезда по прямым и кривым участкам пути, а также на стрелочном

переводе во всем проектном диапазоне допускаемых эксплуатационных скоростей вплоть до конструкционной скорости, при движении прямым и обратным ходом. Также регистрировались значения напряжений при трогании с места, переходные процессы для различных скоростей и участков движения. Регистрация измеряемых процессов производилась кадрами различной длительности в зависимости от длины опытного участка пути и скорости движения. На стадии обработки результатов ходовых прочностных испытаний производилась систематизация зарегистрированных параметров в зависимости от характера пути и режимов движения опытного поезда и производилась отбраковка недостоверных данных.

Коэффициент запаса сопротивления усталости элементов определяется по формуле:

$$n = \frac{\sigma_{-1p}}{K_{\sigma} \cdot \sigma_{a} + \psi_{\sigma} \frac{\sigma_{m}}{\alpha_{\sigma}}},$$

где σ_{-1p} – предел выносливости стандартного образца растяжении-сжатии с симметричным циклом нагружения, МПа;

 K_{σ} — коэффициент, характеризующий понижение предела выносливости конструкции по отношению к пределу выносливости стандартного образца (коэффициент концентрации);

 σ_a — амплитуда напряжений (максимальных в зоне концентрации) цикла, МПа;

 ψ_{σ} – коэффициент, характеризующий влияние асимметрии цикла;

 σ_m – величина среднего напряжения цикла, МПа;

 α_{σ} – теоретический коэффициент концентрации напряжений.

Согласно [3] коэффициент запаса сопротивления усталости для элементов рамы [n] = 2. Результаты определения коэффициента запаса сопротивления усталости по наиболее опасным контрольным точкам представлены в таблице 1.

Таблица 1 – Результаты расчета коэффициента запаса сопротивления усталости

№ датчика	σ-1р, МПа	σ _a , MΠa	K_{σ}	ασ	n	[n]
8		10,69			6,21	
28	165,00	10,38	1,72	1,40	6,39	2,00
34		10,48			6,33	

По результатам проведенной расчетно-экспериментальной оценки установлено, что новая конструкция рамы под силовую установку и гидропередачу дизель-поезда типа ДР1Б удовлетворяет требованиям [3] в части соответствия прочности по коэффициенту запаса сопротивления

усталости (минимальное значение 6,21) и по показателю прочность при действии максимальных продольных ударных сил.

Список литературы

- 1. Михайленко, А.А. Дизель-поезда типа ДР / А.А. Михайленко // М.: Транспорт. 1990.-336 с.
- 2. Путято, А.В. Совершенствование конструкций железнодорожного подвижного состава на основе учета деформирования транспортируемого груза / А.В. Путято, А.О. Шимановский, М.Г. Гегедеш, П.М. Афанаськов // Вестник российской академии естественных наук. 2024. № 1. С. 75-83.
- 3. ГОСТ 33796-2016. Моторвагонный подвижной состав. Требования к прочности и динамическим качествам. Минск : Госстандарт, 2017. 35 с.
- 4. Afanaskou, P. Estimation of the Residual Resource of a Dumping Wagon for Transportation of Bulky Cargo after Long-term Operation / P. Afanaskou, R. Charnin // Transport means 2021. 2021. Part I. p. 402-405.