На первом этапе формировалась геометрия модели или так называемый графический образ рассчитываемой конструкции, определялись свойства материалов, формировалась конечно-элементная сетка, выбирался тип и размер конечных элементов.

На втором этапе определялись метод расчета и расчетные величины.

На третьем этапе системе указывалась структура представления результатов (линии (поверхности) уровня напряжений, графики тех или иных зависимостей и т. д.)

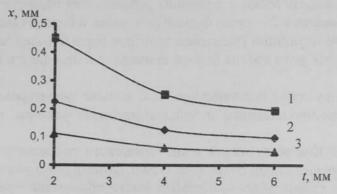


Рисунок 1 — Зависимость величины деформации буртика внешнего кольца ПСС-7212 (x) от его толщины (t) и воздействующей осевой нагрузки (1 — при давлении 65 H/мм²; 2 — 32,5 H/мм²; 3 — 16,25 H/мм²)

Представленные зависимости показывают, что при увеличении толщины буртика его деформация уменьшается. Это позволяет снизить зависимость структурной целостности ПСС от действия значительных осевых нагрузок. С учетом демпфирующих свойств древесины целесообразное увеличение толщины буртика составляет 1 – 2 мм. Дальнейшее увеличение толщины, как показывают расчеты, не влияет на величину деформации буртика.

Таким образом, установлено, что выход из строя ПСС-7212 происходит не только по причине производственного брака, но и в результате нарушений правил эксплуатации. Минимизировать их влияние на работу ПСС можно при обоснованном изменении конструкции подшипника с целью увеличения жесткости элементов, воспринимающих осевые нагрузки. Выполненные исследования предлагают один из вариантов решения поставленного вопроса путем оптимизации геометрических параметров конструктивных элементов ПСС.

УДК 539.3

УРАВНЕНИЯ РАВНОВЕСИЯ ТРЕХСЛОЙНОЙ КРУГОВОЙ ПЛАСТИНКИ ПРИ НЕОСЕСИММЕТРИЧНОМ ДЕФОРМИРОВАНИИ

В. В. ПЕРЛИН

Белорусский государственный университет транспорта

Все более широкое применение в интенсивно развивающихся отраслях промышленности (авиаи ракетостроении, транспортном машиностроении) находят слоистые элементы конструкций. Это объясняется рядом их положительных качеств: высокой удельной жесткостью, хорошими тепло- и звукоизоляционными свойствами, высокими аэродинамическими качествами. В данной работе исследован изгиб подобной пластины под действием неосесимметричных нагрузок.

Постановка задачи и ее решение проводятся в цилиндрической системе координат, связанной со срединной плоскостью заполнителя. Для тонких внешних несущих слоев принимаются гипотезы Кирхгофа, для толстого жесткого заполнителя, воспринимающего нагрузку в тангенциальном направлении, справедлива гипотеза о прямолинейности и несжимаемости деформированной нормали. Проекции внешней нагрузки на вертикальную и радиальную оси координат q = q(r), $p = p(r, \phi)$. На контуре пластинки предполагается наличие жесткой диафрагмы, препятствующей относительному сдвигу слоев ($\psi = 0$ при r = 1).

B качестве искомых величин приняты: прогиб $w(r, \phi)$, относительный сдвиг слоев $\psi(r, \phi)$ и перемещения срединной плоскости заполнителя $u(r, \phi)$.

Выражения для радиальных и тангенциальных перемещений в слоях получены исходя из гипотезы прямолинейности нормали заполнителя:

$$u_r^{(1)} = u_r + c\psi_r - zw_{,r}; \ u_{\phi}^{(1)} = u_{\phi} + c\psi_{\phi} - zw_{,r}; \quad c \le z \le c + h_1;$$

$$u_r^{(2)} = u_r - c\psi_r - zw_{,r}; \ u_{\phi}^{(2)} = u_{\phi} - c\psi_{\phi} - zw_{,r}; \quad -c \le z \le c;$$

$$u_r^{(3)} = u_r + z\psi_r - zw_{,r}; \ u_{\phi}^{(3)} = u_{\phi} + z\psi_{\phi} - zw_{,r}; \quad -c - h_2 \le z \le -c,$$

$$(1)$$

 $_{\text{ГДЕ}}$ z – расстояние от рассматриваемого волокна до срединной плоскости заполнителя; $u+c\psi-$ величина смещения внешнего несущего слоя за счет деформации заполнителя; для второго несущего слоя это смещение будет $u-c\psi$. Запятая в нижнем индексе обозначает операцию дифференцирования по следующей за ней координате.

Деформации в слоях следуют из (1) и соотношений Коши:

$$\varepsilon_{rr}^{(1)} = u_{r},_{r} + c\psi_{r},_{r} - z\omega_{,rr}; \ \varepsilon_{\phi\phi}^{(1)} = \frac{1}{r}(u_{\phi},_{\phi} + c\psi_{\phi},_{\phi} - z\omega_{,r\phi} + u_{r} + c\psi_{r} - z\omega_{,r});$$

$$\varepsilon_{r\phi}^{(1)} = \frac{1}{2} \left[\frac{1}{r}(u_{r},_{\phi} + c\psi_{r},_{\phi} - z\omega_{,r\phi}) + (u_{\phi},_{r} + c\psi_{\phi},_{r} - z\omega_{,rr}) - \frac{1}{r}(u_{\phi} + c\psi_{\phi} - z\omega_{,r}) \right];$$

$$\varepsilon_{rr}^{(2)} = u_{r},_{r} - c\psi_{r},_{r} - z\omega_{,rr}; \ \varepsilon_{\phi\phi}^{(2)} = \frac{1}{r}(u_{\phi},_{\phi} - c\psi_{\phi},_{\phi} - z\omega_{,r\phi} + u_{r} - c\psi_{r} - z\omega_{,r});$$

$$\varepsilon_{r\phi}^{(2)} = \frac{1}{2} \left[\frac{1}{r}(u_{r},_{\phi} - c\psi_{r},_{\phi} - z\omega_{,r\phi}) + (u_{\phi},_{r} - c\psi_{\phi},_{r} - z\omega_{,rr}) - \frac{1}{r}(u_{\phi} - c\psi_{\phi} - z\omega_{,r}) \right];$$

$$\varepsilon_{rr}^{(3)} = u_{r},_{r} - z\psi_{r},_{r} - z\omega_{,rr}; \ \varepsilon_{\phi\phi}^{(3)} = \frac{1}{r}(u_{\phi},_{\phi} + z\psi_{\phi},_{\phi} - z\omega_{,r\phi} + u_{r} + z\psi_{r} - z\omega_{,r});$$

$$\varepsilon_{r\phi}^{(3)} = \frac{1}{2} \left[\frac{1}{r}(u_{r},_{\phi} + z\psi_{r},_{\phi} - z\omega_{,r\phi}) + (u_{\phi},_{r} + z\psi_{\phi},_{r} - z\omega_{,rr}) - \frac{1}{r}(u_{\phi} + z\psi_{\phi} - z\omega_{,r}) \right].$$
(2)

Введем обобщенные внутренние усилия и моменты в пластине:

$$T_{\alpha\beta} = \sum_{k=1}^{3} T_{\alpha\beta}^{(k)} = \sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha\beta}^{(k)} dz; \quad M_{\alpha\beta} = \sum_{k=1}^{3} M_{\alpha\beta}^{(k)} = \sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha\beta}^{(k)} z dz;$$

$$H_{\alpha\beta} = M_{\alpha\beta}^{(3)} + c(T_{\alpha\beta}^{(1)} - T_{\alpha\beta}^{(2)}); \quad Q_{r} = \int_{-c}^{c} \sigma_{rz}^{(3)} dz; \quad Q_{\phi} = \int_{-c}^{c} \sigma_{\phi z}^{(3)} dz.$$
(3)

Считаем, что к наружным поверхностям несущих слоев приложены произвольные распределенные нагрузки, а к торцам — усилия и моменты.

Уравнения равновесия рассматриваемой трехслойной пластины получим, используя вариационный принцип Лагранжа: (4)

$$\delta W = \delta A, \tag{4}$$

где δA — вариация работы внешних сил; δW — вариация работы внутренних сил упругости.

Вариация работ внешней поверхностной нагрузки будет следующей:

$$\delta A = \iint_{S} (q\delta\omega + p_{r}\delta u_{r} + p_{\phi}\delta u_{\phi})rdrd\phi.$$
 (5)

Вариация работы сил упругости:

$$\delta W = \iint_{S} \sum_{k=1}^{3} \int_{h_{k}} (2\sigma_{r\phi}^{(k)} \delta \varepsilon_{r\phi}^{(k)} + \sigma_{\phi\phi}^{(k)} \delta \varepsilon_{\phi\phi}^{(k)} + \sigma_{rr}^{(k)} \delta \varepsilon_{rr}^{(k)}) dz + \int_{-c}^{c} \sigma_{rz}^{(3)} \delta \psi_{r} dz + \int_{-c}^{c} \sigma_{\phi z}^{(3)} \delta \psi_{\phi} dz] r dr d\phi.$$
 (6)

После ряда преобразований получим:

$$\begin{split} \delta W &= \iint_{r\phi} [r(Q_r \delta \psi_r + Q_\phi \delta \psi_\phi + T_{rr} \delta u_r, _r + H_{rr} \delta \psi_r, _r - M_{rr} \delta \omega, _{rr} + T_{r\phi} \delta u_\phi, _r + H_{r\phi} \delta \psi_\phi, _r - M_{r\phi} \delta \omega, _{rr}) + \\ &+ T_{r\phi} (\delta u_r, _\phi - \delta u_\phi) + H_{\phi\phi} (\delta \psi_\phi, _\phi + \delta \psi_r) + H_{\phi\phi} (\delta \psi_\phi, _\phi + \delta \psi_r) + H_{r\phi} (\delta \psi_r, _\phi - \delta \psi_\phi) - \\ &- M_{\phi\phi} (\delta \omega, _{r\phi} + \delta \omega, _r) - M_{r\phi} (\delta \omega, _{r\phi} - \delta \omega, _r)] d\phi dr. \end{split}$$

Преобразовав выражение (7), разбив его на два интеграла, а затем приравняв его к работе внешних усилий (5), потребуем выполнение этого равенства при любых значениях варьируемых перемещений. Это возможно при равенстве нулю коэффициентов при независимых вариациях искомых функций.

Отсюда следует система дифференциальных уравнений равновесия в усилиях, описывающая деформирование круглой трехслойной пластинки при неосесимметричном деформировании:

$$T_{rr},_{r} + \frac{1}{r}(T_{rr} + T_{r\phi},_{\phi} - T_{\phi\phi}) = -p_{r}; \quad T_{r\phi},_{r} + \frac{1}{r}(2T_{r\phi} + T_{\phi\phi},_{\phi}) = -p_{\phi};$$

$$H_{rr},_{r} + \frac{1}{r}(H_{rr} - H_{\phi\phi} + H_{r\phi},_{\phi}) - Q_{r} = 0; \quad H_{r\phi},_{r} + \frac{1}{r}(2H_{r\phi} + H_{\phi\phi},_{\phi}) - Q_{\phi} = 0;$$

$$M_{r\phi},_{r} + M_{rr},_{rr} + \frac{1}{r}(2M_{rr},_{r} + 3M_{r\phi},_{r} + M_{\phi\phi},_{r\phi} - M_{\phi\phi},_{r} + M_{r\phi},_{r\phi}) = -q. \tag{8}$$

Если в системе уравнений (8) положить, что нагрузка распределена симметрично (искомые функции не зависят от φ), то из нее следует система дифференциальных уравнений равновесия в усилиях, описывающая осесимметричное деформирование круговой трехслойной пластинки.

УДК 621.81 - 036.4

ЭФФЕКТИВНОСТЬ МОДИФИЦИРОВАНИЯ РТИ

С. В. ПЕТРОВ

Белорусский государственный университет транспорта

Одной из тенденций современного машиностроения является использование разнообразных методов, обеспечивающих надежную работу узлов трения, в том числе и резинометаллических, эксплуатирующихся в сложных условиях трения и изнашивания, действия активных рабочих сред.

Методы поверхностного модифицирования РТИ позволяют получать покрытия, которые значительно снижают поверхностную энергию, повышают стойкость резин к органическим растворителям и обеспечивают при определенных режимах эксплуатации минимальные значения износа и коэффициента трения.

Наиболее широко в настоящее время распространены технологии нанесения покрытий на основе полиуретана (ПУ) и политетрафторэтилена (ПТФЭ) на поверхность резинотехнических изделий с целью снизить потери при трении. Однако отсутствие данных, способных раскрыть механизм трения и изнашивания резин, модифицированных такими покрытиями, препятствует широкому использованию данных технологий. В связи с этим представляет интерес детальное исследование влияние различных способов модифицирования бутадиен-нитрильных резин на их триботехнические свойства.

Для приближения условий испытаний к реальным режимам эксплуатации резинометаллических изделий проводились испытания пар трения резина — металл по схемам вал — частичный вкладыш