62-192 (075.8) 34.41 37

»

»

-	•			«				»	«
		•	•	»		,	•		

37 ; -./ . . ; . . . , 2010. – : . – 250 .

ISBN 978-985-468-781-0

	:	1-37 02 03 «	,		-	-
, ,	-			»	«	-
				-		»,
1–70 03 01 «		», 1–37	02 05 «		,	
	»	*		».		
		,	,			
		MathCAD, S	tatgraphics Ce	enturion XV,	(FDiT	- - A)
			•			-

62-192 (075.8) 34.41

ISBN 978-985-468-781-0 © . ., 2010 © », 2010 «

2010

. .

To remove this message, purchase the product at www.SolidDocuments.com SOLID CONVERTER PDF

This document was created using

«

«

. .

	3.1.3	
~ ~	3.1.4	
3.2		70
	2.2.1	
	3.2.1	
	3.2.2	MathCAD 75
	272	MauiCAD
	2.2.3	
	3.2.4	
	5.2.5	MathCAD 81
	326	MaulCAD
	5.2.0	MathCAD 84
33		88
5.5	331	88
	332	- «» 89
	3.3.3	- « »
	3.3.4	- « »
	3.3.5	- « » 92
	3.3.6	2
		MathCAD
	3.3.7	
		FDiTA96
3.4		
	3.4.1	
	3.4.2	
		MathCAD104
	3.4.3	
	3.4.4	
		MathCAD 108
	3.4.5	, , ,
	3.4.6	
	2 4 7	, , MathCAD110
	3.4.7	112
4.1		
4.2		

1			
			7
	1.1		7
	1.2		
		1.2.1	
		1.2.2	· ,
		1.2.3	
	1.3		,
		1.3.1	
		1.3.2	
			MathCAD23
		1.3.3	
		1.3.4	
		1.3.5	
			MathCAD
		1.3.6	
		1.3.7	
		1 2 0	MathCAD
		1.3.8	
		1.3.9	
2			
	2.1		
	2.2		
	2.3		
		2.3.1	
		2.3.2	
		2.3.3	
		2.3.4	
3			
U			65
	21		
	5.1		45
		211	
		3.1.1 2.1.2	
		J.1.2	

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

4.3

			MathCAD	120
4	4.4		Staturaphics Centurion XV	123
		4 4 1	Surgraphies Centurion XV	123
		4.4.1		123
		4.4.3		123
4	4.5			
4	4.6			132
		Math	CAD	134
5		wiant		138
5	5.1		· ······	138
	5.2			
	- 2			139
	5.5		_	141
		531	_	141
		5.3.2		142
		5.3.3		
		534		147
		5.5.4		152
	5.4			
				156
				160
	.1			160
	.2		,	
	3			167
	.5		,	176
	.4		,	204
			א תינג דו	200
			Fd11A	215
				220
			MathCAD	222

MathCAD22	24
STATGRAPHICS Centurion XV 22	27
23	39
	45
	17

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

This document was created using

6

5

1.1

, , , ,

8 1

1.2

1.2.1 - , - , - , - , - , - , - , - , [15].

, , , , , , (1.1).

1.2.2 .

, (): , , , , (. _ _ , _ , () .

This document was created using

SOLID CONVERTER PDF

SOLID CONVERTER PDF

SOLID CONVERTER PDF

This document was created using

SOLID CONVERTER PDF

$$1.3 (1.6), {t < \xi \le t + \Delta t \ | \ \xi > t \)} = \frac{P(\{t < \xi \le t + \Delta t \) \ \{\xi > t \)}}{P(\xi > t)} = \frac{P(t < \xi \le t + \Delta t \) \ \{\xi > t \)}{P(\xi > t)} = \frac{P(t < \xi \le t + \Delta t \) \ \{\xi > t \)}{P(\xi > t)} = \frac{P(t < \xi \le t + \Delta t \) \ P(\xi > t)}{P(\xi > t)} = \frac{P(t < \xi \le t + \Delta t \)}{P(\xi > t)} = \frac{F(t + \Delta t) - F(t)}{P(\xi > t)}.$$

$$\lambda(t) = \lim_{\Delta t \to 0} \frac{F(t + \Delta t) - F(t)}{P(\xi > t) \Delta t} = \frac{1}{P(\xi > t)} \lim_{\Delta t \to 0} \frac{F(t + \Delta t) - F(t)}{\Delta t}.$$

$$P(\xi > t) = 1 - P(\xi \le t) = 1 - F(t),$$

$$F(t)$$

$$f(t) \qquad \xi$$

$$f(t) \qquad \xi$$

$$h(t) = \frac{1}{P(\xi > t)} \lim_{\Delta t \to 0} \frac{F(t + \Delta t) - F(t)}{\Delta t} = \frac{f(t)}{1 - F(t)} = \frac{f(t)}{P(t)}.$$

$$\lambda(t) = \frac{1}{P(\xi > t)} \lim_{\Delta t \to 0} \frac{F(t + \Delta t) - F(t)}{\Delta t} = -\frac{dP(t)}{1 - F(t)} = \frac{f(t)}{P(t)}.$$

$$(1.7)$$

$$f(t) = \frac{dF(t)}{dt} = \frac{d(1 - P(t))}{dt} = -\frac{dP(t)}{dt}.$$

$$(1.8)$$

$$\frac{1}{(-dt)}$$

$$(1.9)$$

$$(-dt)$$

, :

5

This document was created using

,

0

t,

SOLID CONVERTER PDF

SOLID CONVERTER PDF

$$f(t) = \lambda(t)P(t) = ct \cdot \exp\left(-\frac{ct^2}{2}\right).$$
(1.19)

, (1.17),
(
$$=\beta^{-2}$$
, . (1.17), . .3).

1.10.

 $\lambda(t)$

1.1 –

/	
	, 1/
	$1,2 \cdot 10^{-3}$
	$2,0 \cdot 10^{-3}$
»	$6,8 \cdot 10^{-3}$
	$3,2 \cdot 10^{-7}$
1000	$4,6 \cdot 10^{-5}$
	10^{-4}
ADM-16/1, -	
-	$1,2\cdot 10^{-5}$
1550 -	$2 \cdot 10^{-5}$
1	$1,5 \cdot 10^{-6}$

	TATA		

20 1

	/	, 1/
1		$0,8 \cdot 10^{-6}$

SOLID CONVERTER PDF

SOLID CONVERTER PDF

1.2 -	
-100	7
(« », 1980 .)	
-10	70
(« »)	
	80
-2-250 « »	
	- 5 .
2,5	
5	4,5 .
()	7.

This document was created using

SOLID CONVERTER PDF

$$\omega(t_1, t_2) = \frac{M[r(t_2) - r(t_1)]}{t_2 - t_1}.$$
(1.31)

 $\xi_p -$

1.3.4

-
$$t_{p\gamma}$$
 - , γ ,
(1.13): γ ,
 $\int_{\infty}^{\infty} f_{p}(t)dt = \gamma$, (1.32)

 $t_{\rm p\gamma}$

$$f_{\rm p}(t)$$
 –

.

1.3 –

	90
	0,5–4,0 .
	1–10 .
»	100 .
	100 .
-200 (1964 .)	120 .
-5440	800 .
« » -5 (1957 .)	2 .
-80 (1974 .)	9.
	ASAE
	16 .
	2 .
	3.
	2,5 .
95	
	40 .
	1,8
90	
	20

1.4 –

		~ "
	,	,
0,6	10	300
1,4	10	500-700
2,0	10	600
3,0	10	550
5,0	12–15	750

SOLID CONVERTER PDF

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

32

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

This document was created using

, , , , , .

This document was created using

SOLID CONVERTER PDF

36

· · · · · ·

This document was created using

SOLID CONVERTER PDF

SOLID CONVERTER PDF

	2.2			41
•,);				
•	,	;		
•	-;			
6			•	, -
: • ,				-
		• •		
• ,		,		
7			:	•
•	,		, ()	-
•	;	-		-
	;		,	
)	;			
, , , ()	,			-
8		•		-
•	,		, ,	-
;				
•	;			:
•	(.	1.0);	1.6);	

SOLID CONVERTER PDF

This document was created using

 $\mu_X, \sigma_X \quad \mu_Y, \sigma_Y$

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

This document was created using

α β $\beta := 1.8$

S

 $Find(\alpha, \beta) =$

 $\alpha := 11.11111$

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

This document was created using

B

This document was created using

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

$$F_{\sigma_{-1}}\left(\begin{array}{c} \left\|Y < \tau_{f}\right) = P\left(\sigma_{-1} \leq \left\|Y < \tau_{f}\right)\right) = \\ = \begin{cases} 1 - \exp\left(-\eta_{\sigma}\left(\frac{X - \sigma_{-1\min}}{160 - 0.5 Y}\right)^{m_{V}}\right), & > \sigma_{-1\min}; \\ 0, & \leq \sigma_{-1\min}. \end{cases}$$
(2.23)

. 2.3.3.1.

B

This document was created using

SOLID CONVERTER PDF

2.

This document was created using

SOLID CONVERTER PDF

SOLID CONVERTER PDF

60

$$f_{\xi}(t) = \frac{1}{\sigma_G \sqrt{2\pi}} \exp\left(-\frac{\left(\frac{x_{\max}}{t} - \mu_G\right)^2}{2\sigma_G^2}\right) \frac{x_{\max}}{t^2}.$$
 (2.34)

(2.34)

$$f_{\xi}(t) = \frac{t_{Me}}{V_G t^2 \sqrt{2\pi}} \exp\left(-\frac{(t_{Me} - t)^2}{2V_G^2 t^2}\right),$$
(2.35)

$$\begin{aligned} \frac{62}{V_{G}} &= \frac{\sigma_{G}}{\mu_{G}} - \\ &X(t); \ t_{Me} = \frac{x_{max}}{\mu_{G}} - \\ &X(t); \ t_{Me} = \frac{x_{max}}{\mu_{G}} - \\ & & \\$$

This document was created using

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

This document was created using

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

3.1.2

- , , ,

3.1),

[53].

, , -, _ _ , _ _ , _ _ _

This document was created using

SOLID CONVERTER PDF

To remove this message, purchase the product at www.SolidDocuments.com

,

, - , -[45] (3.2). , , , () « » « » (... ,)),

3.2.

3.1.

-

}

}

.

- -

68 *3*

3.1 –

	[19]
\bigcirc	,
\bigcirc	,
	, -
	, «
	, ()
\bigtriangleup	

3.2 –

			[19]
\square		-	, -
$\widehat{\mathbf{h}}$		-)	, - (
\downarrow		- , -	-
	-	- [19], (.)	, - « »
$\widehat{\mathbf{A}}$	-	- « »	, - [19], « »

This document was created using

SOLID CONVERTER PL

...

[19] _ _ mn(m n \prod_{m}) -_ ,

(0,26)

3.6 -

This document was created using

SOLID CONVERTER P DF

To remove this message, purchase the product at www.SolidDocuments.com

(0,14)

(0,1)

 $2\lambda(t)$ е2 2.2 2 $\lambda(t)$ $\lambda_2(t)$ 1(t)() () 3.7 – (), ()3.7, «1» «2.1» – «2.2» – «e1»; «e2»; «3»), $\lambda_1(t)$ $\lambda_2(t)$ – t. $[\lambda_1(t) = \lambda_2(t)]$ 3.7, . «2» () • ; $\lambda(t)$ t; $2\lambda(t)$ t.

To remove this message, purchase the product at www.SolidDocuments.com

This document was created using

SOLID CONVERTER PDF

72

)

)

3

e1

74	3	
• ξ –	;	
• η _i –	<i>i</i>	_
	,	A -
	B_i :	
	$A=B_1\cap B_2\cap\ldots\cap B_n.$	(3.1)
B_i	(3.1)	-
	$P(A) = P(B_1 \cap B_2 \cap \ldots \cap B_n) = P(B_1) P(B_2) \cdot \ldots \cdot P(B_n)$	(3.2)
	(1.1)	
	$P(\xi > t) = P(\eta_1 > t) P(\eta_2 > t) \dots P(\eta_n > t);$	
$P(\xi$	$\xi > t$) = 1 - $P(\xi \le t) = (1 - P(\eta_1 \le t)) (1 - P(\eta_2 \le t)) \dots (1 - P(\eta_n \le t));$	(3.3)
	$P(\xi > t) = 1 - F(t) = (1 - F_1(t)) (1 - F_2(t)) \dots (1 - F_n(t)),$	
F(t) –	- ξ, –	
	$t; F_i(t) - $	
$\eta_i -$	l^{-} $l.$	
	1. , $(3.2) \ 0 \le P(B_i) \le 1$,	,
	(1.10)	-
	. (1.10)	
$P(A) = \exp$	$D\left(-\int_{0}^{t}\lambda_{\Sigma}(t)dt\right), \ P(B_{1}) = \exp\left(-\int_{0}^{t}\lambda_{1}(t)dt\right), \dots, P(B_{n}) = \exp\left(-\int_{0}^{t}\lambda_{n}(t)dt\right)$), (3.4)
$\lambda_{\Sigma}(t)$ -	- t: λ.(ι	t) — -
-2(-)	<i>i</i> - <i>t</i> ; <i>i</i> =	$\frac{1}{1, n}$.
	(3.2)	
	$\exp\left(-\int_{1}^{t}\lambda_{\Sigma}(t)dt\right) = \exp\left(-\int_{1}^{t}\lambda_{1}(t)dt\right) \dots \exp\left(-\int_{1}^{t}\lambda_{n}(t)dt\right).$	
	, $\int_{1}^{t} (\lambda_{t} - t) dt - \int_{1}^{t} (t) dt + \int_{1}^{t} (\lambda_{t} - t) dt - \int_{1}^{t} (\lambda_{t} - t) dt + \int_{1}^{t} (\lambda_{t} - t) dt$	
	$\int v_{\Sigma}(v) dv = \int v_{1}(v) dv + \dots + \int v_{n}(v) dv = \int (v_{1}(v) + \dots + v_{n}(v)) dv,$ $0 \qquad 0 \qquad 0 \qquad 0$	
	$\lambda_{\Sigma}(t) = \lambda_1(t) + \ldots + \lambda_n(t).$	(3.5)

This document was created using

S

This document was created using

78	3			
		$P(\xi > t) = 1 - F(\xi)$	$f(t) = 1 - F_1(t) F_2(t) \dots F_n(t),$	(3.10)
F(t)) —		t): $F_i(t)$ –	<u>ج</u>
	t).	η _i (i-	
	•	,	$(3.9) 0 \le P(B_i) \le 1,$,
				-
			. 3.2.5.	-
3.2.4				
				-
-	2 3	(3.3)).	

	-
1	
2	1
2.1	2
3	3

(

Ρ

SOLID CONVERTER

3.12)

This document was created using

[37]

5

This document was created using

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

This document was created using

SOLID CONVERTER PDF

⁸⁶

This document was created using

SOLID CONVERTER P

S

This document was created using

3	
- « »	
, - , - , - , - , - , - , - , - , - ,	-
$\eta = \min\{\xi_1, \xi_2\},\$	(3.14)
$F(x) = P(\eta \le x) = P(\{\xi_1 \le x\} \cup \{\xi_2 \le x\}).$ (3.15)	(3.15)
$F(x) = P(\eta \le x) = P(\{\xi_1 \le x\} \cup \{\xi_2 \le x\}) =$ = $P(\xi_1 \le x) + P(\xi_2 \le x) - P(\xi_1 \le x) \cdot P(\xi_2 \le x) =$ = $F_1(x) + F_2(x) - F_1(x) \cdot F_2(x) = 1 - (1 - F_1(x)) \cdot (1 - F_2(x)).$	(3.16)
- « »	
, - , 3.20,). , « », η	- -
$\xi_1 \xi_2:$ $\eta = \max\{\xi_1, \xi_2\}.$	(3.17)
$\{\xi_1 \leq \xi_2\}.$	-
$\eta = \begin{cases} \max\left\{\xi_1, \xi_2\right\} \mid \xi_1 \leq \xi_2; \\ \infty \mid \xi_1 > \xi_2. \end{cases}$	(3.18)
, $\max\{\xi_1, \xi_2\} \{\xi_1 \le \xi_2\} = \xi_2$,	
$\eta = \begin{cases} \xi_2 \xi_1 \leq \xi_2; \\ \infty \xi_1 > \xi_2. \end{cases}$	(3.19)
$F(x) = P(\eta \le x) = \begin{cases} P(\xi_2 \le x \xi_1 \le \xi_2); \\ 0 \xi_1 > \xi_2. \end{cases}$	(3.20)

This document was created using

90

3.3.3

3.3.4

$$\frac{3.3}{\{\xi_1 \le \xi_2\}} \{\xi_1 > \xi_2\} \\ (3.20) \\ \{\xi_1 \le \xi_2\} P(\xi_2 \le x] \xi_1 \le \xi_2) P(\xi_2 \le x] \xi_1 \le \xi_2) \cdot 0 = \\ = P(\xi_1 \le \xi_2) P(\xi_2 \le x] \xi_1 \le \xi_2) + P(\xi_1 \ge \xi_2) \cdot 0 = \\ = P(\xi_1 \le \xi_2) P(\xi_2 \le x] \xi_1 \le \xi_2), \quad (3.21) \\ \xi_1 \le \xi_2 = \xi_2 = x, \\ F(x) = P(\eta \le x) = P(\xi_2 \le x) P(\xi_1 \le \xi_2| \xi_2 \le x), \quad (3.22) \\ \xi_2^*, \\ \xi_2 = x, \\ [38, .274] \\ f_2^*(y) = \left\{ \frac{1}{P(\xi_2 \le x)} f_2(y), y \le x; \\ (3.23) \\ \xi_1 \le \xi_2| \xi_2 \le x \right\} \\ \xi_1 \le \xi_2| \xi_2 \le x \} \\ F(x) = P(\eta \le x) = P(\xi_2 \le x) P(\xi_1 \le \xi_2^*), \quad (3.24) \\ , \quad (2.12), \\ P(\xi_1 \le \xi_2) = \int_{-\infty}^{\infty} f_2^*(y) F_1(y) dy, \quad (3.25) \\ \xi_2^* = \xi_2, \quad (3.25) \\ P(\xi_1 \le \xi_2| \xi_2 \le x) = P(\xi_1 \le \xi_2^*) = \\ = \int_{-\infty}^{\infty} f_2^*(y) F_1(y) dy = \frac{1}{P(\xi_2 \le x)} \int_{-\infty}^{x} f_2(y) F_1(y) dy, \quad (3.26) \\ (3.26) \quad (3.22) , \quad \xi_1 = \xi_2 - \\ F(x) = P(\eta \le x) = P(\xi_2 \le x) P(\xi_1 \le \xi_2| \xi_2 \le x) = \\ = \frac{P(\xi_2 \le x)}{P(\xi_2 \le x)} \int_{0}^{x} f_2(y) F_1(y) dy, \quad (3.27) \\ \end{array}$$

92 3

This document was created using

Solid Converter PDF

This document was created using

ß

96 *3*

95	, ,	
$t\gamma := 1000$		
Given		
$Fr(t\gamma) = 1 - 0.95$		
$Find(t\gamma) = 439.376421$		

3.4 –

		-
($1 - \frac{1}{3} \exp\left(\frac{-t}{4000}\right) - \frac{1}{3} \exp\left(\frac{-t}{3000}\right) + \frac{1}{3} \exp\left(\frac{-7 \cdot t}{12000}\right) + \frac{1}{3} \exp\left(\frac{-7 \cdot t}{4000}\right) - \frac$	3159,867
)	$-\exp\left(\frac{-3 \cdot t}{4000}\right) + \frac{1}{3}\exp\left(\frac{-11 \cdot t}{6000}\right) - \exp\left(\frac{-t}{1200}\right) - \frac{1}{3}\exp\left(\frac{-t}{480}\right) + \exp\left(\frac{-13 \cdot t}{12000}\right)$	
1	$(-1 + \exp(-t/3000))(-1 + \exp(-t/4000))$	5285,714
1	$1 - \exp(-t/3000)$	3000
2	$1 - \exp(-t/4000)$	4000
2	$(1/3) \exp(-3t/2000) - \exp(-t/2000) + 2/3$	8
3	$1 - \exp(-t/1000)$	1000
4	$1 - \exp(-t/2000)$	2000

01.04.07.

07 -247

(3.22).

•

3.22 – FDiTA

, , , -(

Microsoft Word);

•« » , -

98

3

» « », . 3.23);

This document was created using

SOLID CONVERTER PDF

		3.3					99
•		(«	»	«		-
»	«	», .	3.23).		FDiTA		
			• «	»	(3.25)	-
			,				-
				- «	,	»	-
			(,		-
)			-

FDiTA

100

3.26).

3

3.26 -FDiTA

	3.26			FDiTA,		-
		3.21.	3.25	,		
. 3.3.6.						
3.3.7.3			FDiTA.			-
		«	» (3.27).		-
				,	~	_
			,	**	"	

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

3

Название	Результирующее событие			
Примечание	, , , ,			
Отсутствует				
Функция распреде	ления времени до наступления		График	
1-1/3*exp(-1/400	0*x)-exp(-3/4000*x)+1/3*exp(-7/4000*x)-1/	3*exp(-1/3000*x)	-exp(-1/1200*x)+1/3*e	exp(-11
Вероятность насту	упления в течение заданной наработки, час		2	1
.13323e-5				
Гамма-процентное	время до наступления (час) для гамма, %		95	1
439.3766924				
Математическое с	жидание времени до наступления, час	Мода времени	до наступления, час	
3159.866800		0.		
Стандартное откл	онение времени до наступления, час	Медиана врен	ени до наступления, ча	ic
3031.782340		2249.06254		
Условие наступле наступления собы	ния события-следствия в зависимости от тий-причин	Список событ	ий-причин	
или	~	Промежуто	ное событие1	
🗸 ОК	X Cancel)тображать F(t) н	адиаграмме	

«FDiTA»

This document was created using

To compare this management of the

This document was created using

OLID CONVERTER PDF

 $\mu = 1^{-1}$).

3.22.

«3» –

«1»

«2» –

,

To remove this message, purchase the product at www.SolidDocuments.com

 2μ

1116
106

		t = 0.5 (n = 5)
$Z_{5,1} = 0.598835$ $Z_{5,2}$	$= 0.35001$ $Z_{5,3} = 0.051$	1155
$Z_{11} = 0.456372$	$Z_{11} = 0.438359$	t=1 (n = 10) Z ₁ = 0.105269
210,1 - 0.450572	210,2 - 0.430333	t=3 (n=30)
Z _{30,1} = 0.363242	$Z_{30,2} = 0.478907$	$Z_{30,3} = 0.157851$
:		(«1») -
t	1	0,36; -
0	« <i>Jn</i>)	0,16.
3.4.3		
3.4.3.1		-
•		-
· ,	,	, -
		,
	·	$P_i(t)$
, $P_i(t) = P$	i· ,	$dP_i(t)$
-	. , , , , , , , , , , , , , , , , , , ,	dt
(3.30)		,
$\int 0 = -P_1 \left(\lambda_{12} + \lambda_{13} + \dots + \lambda_{13} \right)$	$_{1n}$) + $P_2 \lambda_{21} + P_3 \lambda_{31} + + P_3$	$P_n \lambda_{n1};$
$\begin{cases} \dots \\ 0 = P_1 \lambda_{1i} + P_2 \lambda_{2i} + \dots + P_n \end{cases}$	$P_{i-1} \lambda_{(i-1)i} - P_i \left(\lambda_{i1} + \lambda_{i2} + \dots \right)$	$(+\lambda_{in}) + P_{i+1} \lambda_{(i+1)i} + + P_n \lambda_{ni};$ (3.34)
$[0 = P_1 \lambda_{1n} + P_2 \lambda_{2n} + P_3 \lambda]$	$_{3n} + \ldots + P_{n-1} \lambda_{(n-1)i} - P_n (\lambda$	$_{n1}+\lambda_{n2}+\ldots+\lambda_{n(n-1)}).$
	(3.34)	(
	(3.31).	-
$P_i(t) = P_i$	($, i = \overline{1, n}$).

This document was created using

SOLID CONVERTER PDF

108

3

$$K = \sum_{i \in E_{+}} P_{i} = T \sum_{j \in E_{-}} \sum_{i \in E_{+}} \left(P_{i} \lambda_{ij} \right) = T \left(\frac{1}{T + T} \right) = \frac{T}{T + T} .$$
(3.39)

3.4.4

MathCAD

$$\begin{cases} 0 = P_2 \mu - P_1 2\lambda; \\ 0 = P_1 2\lambda + P_3 2\mu - P_2 (\lambda + \mu); \\ 1 = P_1 + P_2 + P_3. \end{cases}$$
(3.40)

This document was created using

This document was created using

$$(3.42)$$
:
$$\begin{cases} s \cdot \dot{P}_{1}(s) - P_{1}(t=0) = \dot{P}_{2}(s)\mu - \dot{P}_{1}(s)2\lambda; \\ s \cdot \dot{P}_{2}(s) - P_{2}(t=0) = \dot{P}_{1}(s)2\lambda - \dot{P}_{2}(s)\lambda - \dot{P}_{2}(s)\mu; \\ s \cdot \dot{P}_{3}(s) - P_{3}(t=0) = \dot{P}_{2}(s)\lambda, \end{cases}$$

$$\dot{P}_{i}(s) - P_{i}(t) - P$$

$$i = \overline{1, n}$$
.

$$(P_{1}(0) = 1; P_{2}(0) = 0; P_{3}(0) = 0),$$

$$\begin{cases} \dot{P}_{1}(s)(s + 2\lambda) = \dot{P}_{2}(s)\mu + 1; \\ \dot{P}_{1}(s) 2\lambda = \dot{P}_{2}(s)(s + \lambda + \mu). \end{cases}$$

$$(3.44)$$

$$(3.44)$$

$$:$$

$$\frac{(s + 2\lambda)}{2\lambda} = \frac{\mu}{s + \lambda + \mu} + \frac{1}{(s + \lambda + \mu) \cdot \dot{P}_{2}(s)};$$

$$\dot{P}_{2}(s) = \frac{2\lambda}{(s + 2\lambda)(s + \lambda + \mu) - 2\lambda\mu} = \frac{2\lambda}{s^{2} + s(3\lambda + \mu) + 2\lambda^{2}}. \qquad (3.45)$$

$$(3.45)$$

$$(3.45)$$

$$(3.44):$$

$$\dot{P}_{1}(s) = \frac{\dot{P}_{2}(s)(s + \lambda + \mu)}{2\lambda} = \frac{2\lambda}{s^{2} + s(3\lambda + \mu) + 2\lambda^{2}} \frac{(s + \lambda + \mu)}{2\lambda} = \frac{s + \lambda + \mu}{s^{2} + s(3\lambda + \mu) + 2\lambda^{2}}.$$

$$P(t)$$

$$\dot{P}(s) = \dot{P}_{1}(s) + \dot{P}_{2}(s) = \frac{s + \lambda + \mu}{s^{2} + s(3\lambda + \mu) + 2\lambda^{2}} + \frac{2\lambda}{s^{2} + s(3\lambda + \mu) + 2\lambda^{2}} = \frac{1}{s^{2} + s(3\lambda + \mu) + 2\lambda^{2}} = \frac{s + 3}{s^{2} + s(3\lambda + \mu) + 2\lambda^{2}} = \frac{s + 3}{s^{2} + s(3\lambda + \mu) + 2\lambda^{2}} = \frac{s + 3}{s^{2} + s(3\lambda + \mu) + 2\lambda^{2}} = \frac{s + 3}{s^{2} + 3s + 8/9}.$$
(3.46)
$$\frac{P(t)}{MathCAD} \qquad (3.46)$$

$$= \frac{P(t)}{MathCAD} \qquad (3.46)$$

$$= \frac{P(t)}{MathCAD} \qquad (3.46)$$

$$= \frac{P(t)}{MathCAD} \qquad (3.46)$$

This document was created using

SOLID CONVERTER PDF

This document was created using

«4»

«2»,

This document was created using

3.25 -

SOLID CONVERTER PDF

«4»

SOLID CONVERTER PDF

To remove this message, purchase the product at www.SolidDocuments.com

P(t) $\lambda(t)$ t, .),

1.4, 2.3, 3.2–3.4

4.1

).

K 2 = 0,99999995485601. ♦

3.4

K 1 = 0,99999995485525

4.2

(. . 1.4.1).

$$P(t_i) \approx 1 - \frac{\sum_{j \le i} n(j)}{N}, \qquad (4.1)$$

 $\sum_{j \leq i} n(j) -$

$$\lambda(t_i) \approx \frac{n(i)}{N(i) \cdot (t_i - t_{i-1})}, \qquad (4.2)$$

 t_i . t_i

$$(t_i - t_{i-1}) - , t_i;$$

 $N(i) - , -$

$$(t_{i-1}; t_i),$$

•

MathCAD

4.1 -

i	n(i)	i	n(i)	i	n(i)	i	n(i)
1	16	6	5	11	5	16	6
2	10	7	3	12	4	17	7
3	7	8	5	13	6	18	8
4	6	9	4	14	6	19	10
5	4	10	5	15	5	20	10

N := 190

To remove this message, purchase the product at www.SolidDocuments.com

This document was created using

This document was created using

SOLID CONVERTER PDF

50

7.0608

4,82759

28.0565

0.07

20.46

20.39

2.65

5.39

Summary Statistics for OTF 1

Standard deviation 5.29684 Coeff. of variation 75.0176 %

4

Statgraphics Centurion XV

4.1.

10

1_3

٤ –

5,18 2,52 5,71 4,92 15,38 14,24 0,07 2,22 16,54 2,65 7,51 4,39 3,35 9,7 6,12 4,78 5,31 7,64 6,74 6,8 2,3 4,41 1,87 9,39 5,65 14,12 1,97 3,56 5,69 12,04 1.2 5,47 7,74 4,67 16,58 4,98 12,12 0,23 3,74 11,44

This document was created using

SOLID CONVERTER Ρ

124

 $\gamma = 95 \%$.

Count Average

Median

Variance

Minimum

Maximum

Lower quartile

Range

Geometric mean

Mode

	4.4					125
•	- 2,65) .	(25 %		-
•	2,05 - 11,44 11,44);	(75 %		-
	. 8	,				-
	$[0,\infty)$,3.		42	
,			χ ² -		7.2.	-
(, ·		,3).			-

Distribution	Est. Parameters	Chi-Squared P	KS D
Weibull	2	0,451679	0,0840131
Loglogistic	2	0,435478	0,0866018
Gamma	2	0,403969	0,0808257
Loglogistic (3-Parameter)	3	0,365362	0,0860408
Exponential	1	0,320053	0,152673
Largest Extreme Value	2	0,297925	0,115395
Exponential (2-Parameter)	2	0,249846	0,147004
Lognormal (3-Parameter)	3	0,211645	0,0884645
Weibull (3-Parameter)	3	0,156353	0,0876979
Gamma (3-Parameter)	3	0,156353	0,0791728
Lognormal	2	0,0739689	0,142282
Maxwell	2	0,0557509	0,173514
Rayleigh	2	0,0468723	0,171641
Half Normal	2	0,0429278	0,0986642
Chi-Squared	1	0,0332403	0,19198
Logistic	2	0,0129457	0,138546
Triangular	3	0,00884775	0,161156
Cauchy	2	0,00591536	0,153447
Laplace	2	0,00553416	0,148142
Exponential Power	3	0,00316455	0,277395
Normal	2	0,00173409	0,180648
Birnbaum-Saunders	2	0,00055772	0,288414
Smallest Extreme Value	2	0,0000920842	0,201125
Uniform	2	0,0000244531	0,323835

 χ^2 -

Statgraphics Centurion XV

.11).

4.3 –

 χ^2 -Statgraphics Centurion XV

4.2 -

SOLID CONVERTER PDF^{To} remove this message, purchase the product at www.SolidDocuments.com

128 4

-	,	$(\gamma = 0,95)$
$t\gamma_{95} := 3$		
Given		
_tγ_95		
f(t) dt = 1 - 0.95		
³ 0		
$Find(t\gamma_{95}) = 0.783607$		

	10		0,2408,
- 7,0402 (-
,	. 4.1),	-	
$\gamma = 95 \%$	0,7836		
			-

4.4.3

:

45-II [65],) 45 ,

4.3 –

1	260,73	13	285,26	25	256,73	37	202,04
2	274,82	14	255,68	26	333,81	38	294,02
3	250,34	15	275,81	27	318,62	39	221,85
4	278,92	16	305,13	28	370,77	40	276,98
5	320,95	17	284,79	29	255,07	41	285,72
6	349,49	18	211,95	30	251,77	42	339,2
7	265,84	19	275,67	31	334,61	43	334,61
8	259,58	20	243,1	32	280,81	44	349,38
9	226,17	21	241,51	33	232,73	45	290,25
10	236,57	22	244,99	34	318,29		
11	279,36	23	346,35	35	237,08		
12	270,38	24	232,35	36	253,39		

To remove this message, purchase the product at www.SolidDocuments.com

4.4 -

Statgraphics Centurion XV

B

). (.

Comparison of Alternative Distributions					
Distribution	Est. Parameters	Chi-Squared P	KS D		
Gamma	2	0,7804	0,0956176		
Normal	2	0,663849	0,115317		
Laplace	2	0,480595	0,109002		
Loglogistic	2	0,480595	0,0980842		
Lognormal	2	0,368924	0,0874859		
Logistic	2	0,368886	0,102726		
Weibull	2	0,0499434	0,149761		
Uniform	2	0,0401782	0,192949		
Smallest Extreme Value	2	0,0256413	0,17418		
Exponential	1	0,0	0,516431		
Pareto	1	0,0	0,611327		

4.5 -

 $\alpha = 47,4801;$

, . .3).

 χ^2 -Statgraphics Centurion XV

.11).

Statgraphics Centu-

 $\beta = 1/0.170744 = 5.8567$ (

 γ^2 -

 $\alpha = 0.05$,

SOLID CONVERTER

rion XV

MathCAD.

Gamma

at or

below

DPLUS

P-Value

DN

DMINUS

4.5

4.6 -

 χ^2 -

Statgraphics Centurion XV

This document was created using

SOLID CONVERTER PDF

132

MathCAD.

This document was created using

SOLID CONVERTER PDF

This document was created using

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

4.6

This document was created using

SOLID CONVERTER PDF

• , . .

- ;
- [26] -

[42, 58]:

- ;
- •
- , ; ● .
- , • ;
- . -, ;
- -),
- , , <u>-</u> -
- .

5.2

140 5

- - : 1) ;
 - 2) , (, ,):
- ; • ; • .
- .
- , : • (-).
- , -; ● ____
- -; •
- , , ,
- - ; ;)
- •
- ; • , 0,99999 0,995 529830
 - 0,99999 0,995 529830

This document was created using

SOLID CONVERTER PDF

5.2	141
	-
	-
(,),	-
•	-

- •
- :

5.3

5.3.1	-	
	-	

5

[42]. [73, 75].

142 5

5.3.2

- 3 •
- [24, 41, 71, 73],
- . 0» « .1») «
- « » . 1» « 5.1). .1»(u u . 1». « « . 1». » («)
 - » () «
 - 5.1). MS ((11 *I*2) ().

5.1 –

	<i>X</i> 1	X2	<i>X</i> 3	Y
X1 o	«0»	«0»		«O»
	«0»	«1»		«O»
X2	«1»	«0»		«O»
	«1»	«1»		«1»
XI 1	«0»	«0»		«0»
I Y	«0»	«1»		«1»
X2	«1»	«0»		«1»
	«1»	«1»		«1»
	«0»			«O»
	«1»			«1»
	«0»			«1»
$\xrightarrow{X1}$ $\stackrel{1}{\longrightarrow}$ $\stackrel{Y}{\longleftarrow}$	«1»			«0»

This document was created using

SOLID CONVERTER PDF

« .1»	-	«K1»					
«e2».		«K2x»					
t_{10} .		; «K2	0» —				
	-						
« <i>K</i> 2».	-		« . 0».				
»							
		«K2x» «	. 1».				
		«K1»	« .1»,				
«R»		«R1»	«I2».				
« <i>K</i> 2».	«K2»	«e1»	«e2»,				
		«K2x»	« .1»),				
	-	«R1»	*				
	-	« .1»,					
»	-		«e1»				
		,	(
«e2»							
(t_{01} «K2p»					
	-		. ,				

)

*K*1 « .0» 1 *K*2 1

.

5.3 –

«e1» «e2».

R

11 MS

*I*2

A

•

« . 0 «e1» («R» "**1**1» 0.

	«11»,	**	•	0».					
(« .1»			«K1»)			«R»		
	,						«K2».		«KZ
	t_{01}			«	. 1»,				
	«e2».								
	,	«R»		_		,			
	«/1»,		«	. 0».		**	»		
		•						_	

$\ll e1 \gg$ 5.3) . 1». «

This document was created using

SOLID CONVERTER Ρ F

To remove this message, purchase the product at www.SolidDocuments.com

5.3

(

«

. 1».

,

 t_{01} ,

«*K*1»)

This document was created using

Solid Converter PDF

148

5

5.9 –

150 5

→ II → → dT= мкс 💌 🔳 Ттт=0 мкс 🔻 🦠 Модель d: Wook документы Wy_Programs \Sm-des_4 Wogeли... 🖃 🗖 🗙 Параметры элементов обнаружения отказов Имя К1 Тип ПовторДско Состояние Параметры Неисправности Помехи Восстановление Временные характеристики Масштаб времени 🔤 💌 Время Закон задержки распред-я Мат ожилание СКО Ср.вр. зд.р.0-1 Детермин. 💌 0,001 Ср.вр. зд.р.1-0 Детермин. - 0,001 Цоколевка Входы Выхоль AX7 AX ΩK. Отмена

5.11 -

This document was created using

Solid Converter PDF

5.3

габ времени 🚾 🔻

Параметры элементов			Параметры элем	не нто в				
Имя К1 Тип	і ПовторДскр		Имя К1		Тип ПовторДскр			
Состояние Параметры Неисправност	И Помехи Восстановление		Состояние Пара	иетры Неисправ	вности Помехи Вос	тановление		
Время наработки элемент	ананеисправность		Время восстановления неисправности элемента					
Неисправн. Закон	Масштаб времени 🛛 💌			Закон	Масштаб вре	чени 🚾		
распред-я	Мат.ожидание СКО		Неисправн.	распред-я	Мат.ожидание	СКО		
внешн.Конст.0 Экспоненц. 💌	0 0		внешн.Конст.0	Экспоненц.	• 0	0		
внутр.Конст.0 Экспоненц. 💌	0 0		внутр.Конст.0	Экспоненц.	• 0	0		
внешн.Конст.1 Экспоненц. 💌	1,5 0		внешн.Конст.1	Экспоненц.	• 1	0		
внутр.Конст.1 Экспоненц. 💌	0 0		внутр.Конст.1	Экспоненц.	• 0	0		
внешн.Сбой Экспоненц. 💌	0 0							
внутр.Сбой Экспонени. 💌	0 0							
ПРИМЕЧАНИЕ: Нулевое значение мат наработки элемента на некоторую неи невозможность.	тематического ожидания времени исправность указывает на её		ПРИМЕЧАНИЕ: времени восста указывает на её	нулевое значение новления некотор невосстанавлива	а математического ожной неисправности э ле аемость.	идания мента		
ОК Отмена По ум	ОК Отмена По умолнанио							
5.12	_							

S

5.14 -

To remove this message, purchase the product at www.SolidDocuments.com

This document was created using

SOLID CONVERTER PDF

This document was created using

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com B

5.17 -

ß

This document was created using

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

157

5

4.922

5.21 -

5.22 -

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

5.24.

5.23 -

5.2,

	-	-	-	-	-		
	21378	20006	19387	30748	31632		
	2 2502000	0 4017400	2 000 12 66	2 250 (177	5 000000		
,	2,2582999	2,481/432	3,0004366	3,3506177	5,2220839		
95%-							
-							
-	2 22571 (0	0.4560050	0.0704222	2 2171115	5 1 (00 (20		
,	2,255/109	2,4509258	2,9704322	3,31/1115	5,1098030		
-							
,	1,6829699	1,7905464	2,1148109	2,9964558	4,7364546		
<i>P</i> (0,5)	0,9215081	0,9373188	0,954093	0,9289385	0,9603882		
<i>P</i> (1)	0,7650388	0,8028591	0,8551091	0,8091908	0,8842944		
<i>P</i> (2)	0,4598185	0,5182945	0,6157219	0,5870301	0,7302731		
<i>P</i> (3)	0,2536720	0,3025592	0,4050137	0,4156693	0,5916161		
<i>P</i> (5)	0,0698382	0,0908727	0,1555166	0,2111032	0,3895739		

5.24 -

(. . 3.4.6).

) [40].

This document was created using

5.2 -

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com