УДК 539.4 EDN: YIZSRJ

Расчет сил, действующих на непараллельных границах раздела аустенит / мартенсит в ферромагнитном монокристалле с памятью формы, находящемся в жесткой заделке

B.O. OСТРИКО B^1 , O.M. OСТРИКО B^2

Решена статическая задача о расчете сил, действующих вдоль непараллельных границ раздела аустенит / мартенсит единичной мартенситной прослойки, в механически нагруженном ферромагнитном призматическом монокристалле с памятью формы, находящемся в жесткой заделке.

Ключевые слова: мартенситная прослойка, ферромагнитный монокристалл с памятью формы, межфазная граница раздела.

The static problem of calculating the forces acting along non-parallel austenite / martensite interfaces of a single martensite layer in a mechanically loaded ferromagnetic prismatic shape memory single crystal located in a rigid embedding is solved.

Keywords: martensitic layer, ferromagnetic monocrystal with shape memory, interface.

Введение. Уникальные физико-механические свойства ферромагнитных сплавов Гейслера с эффектом запоминания формы хорошо изучены с помощью экспериментальных методов исследования [1]–[6]. Растет актуальность разработки теоретических методов для прогнозирования поведения данных материалов при заданных нагрузках. Такие методы и полученные с их помощью результаты востребованы в технологиях изготовления технических систем, рабочим элементом в которых являются ферромагнитные материалы с эффектом памяти формы [7], [8]. Как было показано в [9]–[12], расчеты для инженерных приложений и развития теории бездиффузионных фазовых превращений удобно вести на основе методов механики деформируемого твердого тела [13].

Целью данной работы стало решение статической задачи о расчете сил, действующих в плоскостях границ раздела аустенит / мартенсит мартенситной прослойки в случае непараллельных границ раздела в механически нагруженном призматическом ферромагнитном монокристалле состава Гейслера, обладающим свойством памяти формы и находящемся в жесткой заделке.

1. Постановка задачи. На рисунке 1 показан фрагмент монокристалла Ni₂MnGa с непараллельными границами раздела аустенит / мартенсит (фотография любезно предоставлена Созиновым А.Л.). При соприкосновении границ раздела, как это показано на рисунке 1, они теряют свою подвижность в направлении навстречу друг другу. При этом в противоположном направлении подвижность границ сохраняется. В сечении плоскостью, параллельной плоскости рисунка 1, мартенситная прослойка имеет форму треугольника. При этом границы раздела контактируют в одной из вершин треугольника (верхняя вершина на рисунке 1).

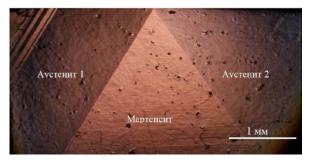


Рисунок 1 — Фрагмент монокристалла Ni_2MnGa с непараллельными соприкасающимися границами раздела аустенит / мартенсит

На рисунке 2 схематически представлен призматический монокристаллический образец с треугольной в сечении мартенситной прослойкой. Образец механически нагружен и находится в жесткой заделке.

Случай не контактирующих друг с другом границ раздела схематически представлен на рисунке 3. При этом мартенситная прослойка в рассматриваемом сечении имеет вид трапеции.

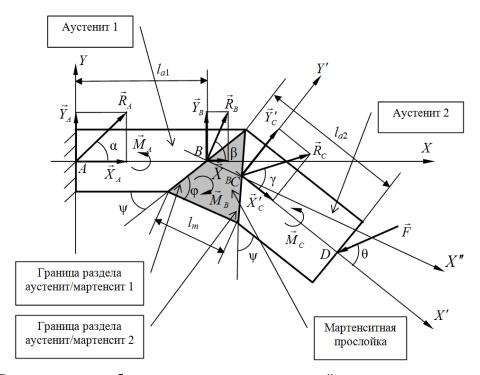


Рисунок 2 — Схематическое изображение находящегося в жесткой заделке механически нагруженного призматического монокристаллического образца с мартенситной прослойкой в случае соприкасающихся непараллельных межфазных границ

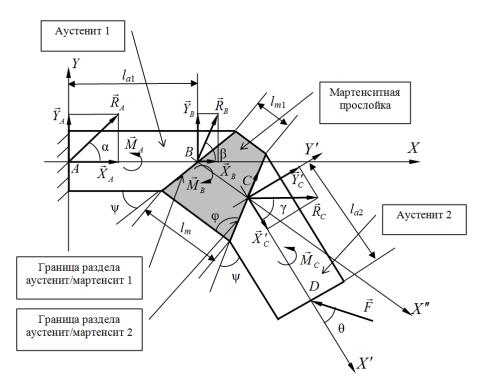


Рисунок 3 — Схематическое изображение находящегося в жесткой заделке механически нагруженного призматического монокристаллического образца с мартенситной прослойкой в случае несоприкасающихся непараллельных межфазных границ

Заданными (известными) параметрами будем считать следующие (см. рисунки 2 и 3): \vec{F} — приложенная к свободному торцу призматического образца нагрузка; θ — угол между направлением действия силы \vec{F} и осью образца; ψ — угол между плоскостью границы раздела и аустенитной поверхностью монокристалла; ϕ — угол между плоскостью границы раздела и мартенситной поверхностью монокристалла; l_{a1} и l_{a2} — параметры аустенитных частей монокристалла; l_m — длина основания треугольника или нижнего основания трапеции мартенситной части монокристалла; l_{m1} — длина верхнего основания трапеции мартенситной части монокристалла (рисунок 3).

Кроме моментов сил, к числу искомых отнесем реакцию $\vec{R}_{\scriptscriptstyle A}$ и действующие в плоскостях границ раздела аустенит / мартенсит силы $F_{\scriptscriptstyle ext1}$ и $F_{\scriptscriptstyle ext2}$.

2. Решение задачи и обсуждение результатов.

1. Для второго аустенитного объема (рисунки 2 и 3) в состоянии равновесия будем иметь:

$$\sum_{i} F_{iX'} = R_C \cos \gamma - F \cos \theta = 0, \tag{1}$$

$$\sum_{i} F_{iY'} = R_C \sin \gamma - F \sin \theta = 0. \tag{2}$$

Здесь $R_C \cos \gamma = X_C'$, $R_C \sin \gamma = Y_C'$, γ и R_C – искомый угол и реакция (рисунки 2 и 3).

Условие равновесия моментов сил для второго аустенитного объема имеет вид:

$$\sum_{i} M_{C}(F_{i}) = F l_{a2} \sin\theta + M_{C} = 0.$$

Отсюда

$$M_C = -Fl_{a2}\sin\theta. (3)$$

Следует отметить, что в (3) с правой стороны равенства все параметры известны. А из (1) и (2) следует:

$$tg\gamma = tg\theta$$
, т. е. $\gamma = \theta$ и $R_C = F$. (4)

2. Для мартенситного объема получим (рисунки 4 и 5):

$$\sum_{i} F_{iX''} = R_C \cos \gamma_1 + R_B \cos \beta_1 = 0, \tag{5}$$

$$\sum_{i} F_{iY''} = R_C \sin \gamma_1 + R_B \sin \beta_1 = 0.$$
 (6)

Для моментов сил в случае соприкасающихся границ раздела (рисунок 4) будем иметь

$$\sum_{i} M_{B}(F_{i}) = R_{C} \frac{l_{m}}{2} \sin \gamma_{1} - M_{B} + M_{C} = 0, \tag{7}$$

а для несоприкасающихся (рисунок 5) –

$$\sum_{i} M_{B}(F_{i}) = R_{C} \frac{l_{m} + l_{m1}}{2} \sin \gamma_{1} - M_{B} + M_{C} = 0.$$
 (8)

Тогда из (7), с учетом (3), получаем

$$M_B = R_C \frac{l_m}{2} \sin \gamma_1 - F l_{a2} \sin \theta = F \left(\frac{l_m}{2} \sin \gamma_1 - l_{a2} \sin \theta \right). \tag{9}$$

Из (8), с учетом (3), имеем

$$M_{B} = R_{C} \frac{l_{m} + l_{m1}}{2} \sin \gamma_{1} - F l_{a2} \sin \theta = F \left(\frac{l_{m} + l_{m1}}{2} \sin \gamma_{1} - l_{a2} \sin \theta \right). \tag{10}$$

Из рисунков 2, 3, 4, 5, с учетом (4), не трудно показать, что

$$\gamma_1 = \gamma - (\phi - \psi) = \theta - (\phi - \psi). \tag{11}$$

Таким образом, угол γ_1 и момент сил M_B выражаются через известные параметры, т. е. γ_1 и M_B найдены.

3. Для первого аустенитного объема в соответствии с рисунками 2 и 3 справедлива система уравнений:

$$\sum_{i} F_{iX} = X_A + X_B = 0, (12)$$

$$\sum_{i} F_{iY} = Y_A + Y_B = 0, (13)$$

$$\sum_{i} M_{A}(F_{i}) = R_{B} l_{a1} \sin\beta + M_{A} - M_{B} + M_{C} = 0.$$
 (14)

Из (12) и (13) получаем $R_A\cos\alpha=-R_B\cos\beta$, $R_A\sin\alpha=-R_B\sin\beta$.

И далее

$$tg\alpha = tg\beta$$
, т. е. $\alpha = \beta$, и $R_A = -R_B$. (15)

Учитывая это, из геометрических построений, представленных на рисунках 2, 3, 4, 5, получим

$$\beta_1 = \beta - (\phi - \psi) = \alpha - (\phi - \psi). \tag{16}$$

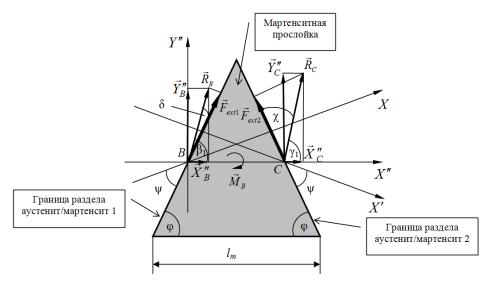


Рисунок 4 — Схематическое изображение сил, действующих на границах раздела аустенит / мартенсит в случае соприкасающихся непараллельных межфазных границ

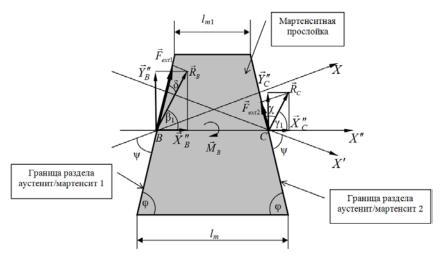


Рисунок 5 — Схематическое изображение сил, действующих на границах раздела аустенит / мартенсит в случае несоприкасающихся непараллельных межфазных границ

Из (5) и (6), с учетом (4), (11) и (15), имеем

$$R_{A} = F \frac{\cos(\theta - (\phi - \psi))}{\cos(\alpha - (\phi - \psi))},$$

$$R_{A} = F \frac{\sin(\theta - (\phi - \psi))}{\sin(\alpha - (\phi - \psi))}.$$

Отсюда следует, что

$$\alpha = \theta \text{ if } R_{A} = F. \tag{17}$$

Из (14) получим

$$M_A = M_B - M_C - R_B l_{al} \sin \beta. \tag{18}$$

Подставив в (18) соотношения (3) и (9) или (10), будем иметь

$$M_A = R_C \frac{l_m}{2} \sin \gamma_1 - R_B l_{a1} \sin \beta = F\left(\frac{l_m}{2} \sin \gamma_1 + l_{a1} \sin \beta\right),$$

для ситуации, представленной на рисунке 2, и

$$M_A = R_C \frac{l_m + l_{m1}}{2} \sin \gamma_1 - R_B l_{a1} \sin \beta = F\left(\frac{l_m + l_{m1}}{2} \sin \gamma_1 + l_{a1} \sin \beta\right),$$

для ситуации, представленной на рисунке 3.

4. Для нахождения модулей сил F_{ext1} и F_{ext2} , действующих в плоскостях границ раздела аустенит/мартенсит мартенситной прослойки, воспользуемся соотношениями, полученными из геометрических построений, представленных на рисунках 4 и 5:

$$F_{ext} = R_B \cos \delta, \tag{19}$$

$$F_{\text{ext2}} = R_C \cos \chi. \tag{20}$$

Здесь $\delta = \phi - \beta_1$, а с учетом (16) и (17) не трудно показать, что $\delta = \phi - \theta + (\phi - \psi)$.

Из рисунков 4 и 5 видно, что $\chi = \pi - \phi - \gamma_1$. Учитывая (11), получим

$$\chi = \pi - \theta - \psi$$
.

Ранее было показано (соотношение (4)), что $R_{\rm C}=F$. А из (15) и (17) следует, что $R_{\rm R}=-F$. Тогда (19) и (20) перепишем в виде:

$$F_{ext1} = -F\cos(2\phi - \theta - \psi), \tag{21}$$

$$F_{ext2} = -F\cos(\theta + \psi). \tag{22}$$

При получении соотношения (22) были выполнены следующие преобразования [14]:

$$\cos \chi = \cos (\pi - \theta - \psi) = -\cos (-\theta - \psi) = -\cos (\theta + \psi).$$

Как видно из (21) и (22) силы $F_{\rm ext1}$ и $F_{\rm ext2}$ направлены в противоположную сторону направления показанного на рисунках 4 и 5.

Заключение. Таким образом, решена статическая задача для механически нагруженного ферромагнитного призматического монокристалла с памятью формы, находящегося в жесткой заделке, с мартенситной прослойкой, имеющей непараллельные границы. В ходе решения задачи были найдены: моменты сил, действующих на аустенитный и мартенситный объемы; реакция заделки \vec{R}_A ; силы F_{ext1} и F_{ext2} , действующие в плоскостях границ раздела аустенит / мартенсит. Адекватность разработанной расчетной схемы и достоверность полученных на ее основе результатов базируется на применении классических методов расчетов, представленных в известной учебной литературе [13], [14].

Авторы благодарят профессора А.Л. Созинова за предоставленную фотографию (рисунок 1) и обсуждение отдельных вопросов статьи.

Литература

- 1. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga / S. J. Murrey, M. Marioni, S. M. Allen, R. C. O'Handley // Appl. Phys. Lett. 2000. V. 77. P. 886–888.
- 2. Saren, A. Dynamic twinning stress and viscous-like damping of twin boundary motion in magnetic shape memory alloy Ni-Mn-Ga / A. Saren, K. Ullakko // Scripta Materialia. 2017. V. 139. P. 126–129.

- 3. Energy conversion in Ni-Mn-Ga with asymmetrical bias magnetic field / M. Veligatla, P. Lindquist, C. J. Garcia-Cervera, P. Müllner // Journal of Magnetism and Magnetic Materials. 2022. V. 551. P. 169–183.
- 4. Twin boundary structure and mobility / D. Shilo, E. Faran, B. Karki, P. Müllner // Acta Materialia. 2021. V. 220. P. 117–316.
- 5. Остриков, О. М. Исследование пластической деформации поверхности монокристалла Ni_2MnGa методом индентирования / О. М. Остриков, А. Л. Созинов, А. В. Сорока // Инженернофизический журнал. 2012. Т. 85, № 5. С. 1132–1141.
- 6. Остриков, О. М. Разрушение и сопутствующие ему эффекты в ферромагнитном монокристалле Ni_2MnGa с эффектом памяти формы / О. М. Остриков, Е. В. Шматок // Инженерно-физический журнал. − 2015. − Т. 88, № 1. − С. 272–279.
- 7. Linearly enhanced circular magnetic field actuator : pat. US 11094440B2 / P. Müllner, G. Johnston. Publ. date 17.08.2021.
- 8. Ullakko, K. Magnetically controlled shape memory alloys: A new class of actuator materials / K. Ullakko // J. Mater. Eng. Perform. 1996. V. 5, № 3. P. 405–409.
- 9. Остриков, В. О. Статика и динамика границы раздела аустенит / мартенсит в нагруженном призматическом монокристалле с эффектом памяти формы, находящемся в жесткой заделке / В. О. Остриков, О. М. Остриков // Машиностроение : республ. межведомственный сб. науч. трудов / БНТУ; гл. ред. В. К. Шелег. Минск : БНТУ, 2022. Вып. 33. С. 139–147.
- 10. Василевич, Ю. В. Статика и динамика границы раздела аустенит / мартенсит в призматическом ферромагнитном монокристалле с эффектом памяти формы, находящемся в жесткой заделке и магнитном поле / Ю. В. Василевич, В. О. Остриков, О. М. Остриков // Машиностроение : республ. межведомственный сб. науч. трудов / БНТУ ; редкол.: В. К. Шелег (гл. ред.) [и др.]. Минск : БНТУ, 2023. Вып. 34. С. 131–139.
- 11. Василевич, Ю. В. Статика и динамика границ раздела аустенит / мартенсит мартенситной прослойки в нагруженном призматическом ферромагнитном монокристалле с эффектом памяти формы, находящемся в жесткой заделке / Ю. В. Василевич, В. О. Остриков, О. М. Остриков // Машиностроение : республ. межведомственный сб. науч. трудов / БНТУ ; редкол.: В. К. Шелег (гл. ред.) [и др.]. Минск : БНТУ, 2023. Вып. 34. С. 139–146.
- 12. Остриков, В. О. Статическая и динамическая задача для единичной мартенситной прослойки в ферромагнитном монокристалле с эффектом памяти формы, находящемся в магнитном поле в жесткой заделке / В. О. Остриков, О. М. Остриков // Проблемы физики, математики и техники. – 2023. – № 1 (54). – С. 43–46.
 - 13. Тарг, С. М. Краткий курс теоретической механики / С. М. Тарг. М.: Высш. шк., 2010. 416 с.
- 14. Воднев, В. Т. Основные математические формулы : Справочник / В. Т. Воднев, А. Ф. Наумович, Н. Ф. Наумович. Минск : Выш. шк., 1988. 269 с.

¹Гомельский государственный технический университет имени П.О. Сухого

²Белорусский государственный университет транспорта

Поступила в редакцию 04.03.2024