- 2 Галяс, А. В. Высшие водные растения в системах биологической очистки сточных вод / А. В. Галяс, Е. П. Проценко // Молодежь. Наука. Производство : материалы межвуз. науч. конф. студентов и аспирантов, 2–4 марта 2009 г. Курск, 2009. 77 с.
- 3 **Тимофеева, С. С**. Биотехнология обезвреживания сточных вод // С. С. Тимофеева // Химия и технология воды. -1995. T. 17, № 5. C. 525–532.
- 4 **Янкевич, М. И.** Формирование ремедиационных биоценозов для снижения антропогенной нагрузки на водные и почвенные микроэкосистемы : автореф. дис. . . . д-ра биол. наук / М. И. Янкевич. Щелково, 2002. 48 с.
- 5 **Cohen, Y.** Oil degradation by cyanobacterial mats / Y. Cohen // 10-th International Symposium on Phototrophic Procariotes, Barselona, 26–31 august, 2000. Barselona, 2000. 85 p.

BACTERIA AND HIGHER PLANTS FOR WASTEWATER TREATMENT

K. M. KOMISSAROVA

Belarusian State University of Transport, Gomel

УДК 691.175.5/.8

УЛУЧШЕНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ РЕАКТОПЛАСТОВ ВВЕДЕНИЕМ СТЕКЛОВОЛОКНА

С. Ю. КОНОВАЛОВ, Е. Ф. КУДИНА

Белорусский государственный университет транспорта, г. Гомель viktornevsky8448039@gmail.com

Актуальность. Реактопласты широко используются в различных отраслях промышленности благодаря своим превосходным механическим свойствам, таким как прочность, жесткость и устойчивость к износу. Однако современный уровень развития промышленности выдвигает повышенные свойства к физико-механическим свойствам новых материалов для удовлетворения конкретных требований.

Введение стекловолокна в реактопласты является эффективным способом улучшения их механических свойств. Стекловолокно обладает высокой прочностью на растяжение и жесткостью, что приводит к значительному повышению этих характеристик в композитном материале. Кроме этого, стекловолокно повышает устойчивость реактопластов к износу, обеспечивая им долговечность в условиях эксплуатации с высокими нагрузками.

Таким образом, наполнение реактопластов стекловолокном позволит разрабатывать и использовать материалы на основе реактопластов более эффективно улучшит производительность и долговечность различных изделий и конструкций [1].

Цель работы – исследование влияния введения стекловолокна на механические свойства реактопластов, такие как прочность, жесткость и устойчивость к износу, с целью повышения их качества и эффективности в промышленных и инженерных приложениях.

Основные результаты. Количество вводимого стекловолокна может варьироваться в зависимости от требуемой прочности и жесткости материала. Обычно диапазон содержания наполнителя варьируется от 20 до 70 % по объему материала [2].

Свойства композитного материала существенно зависят от содержания стекловолокна. Сравнение полученного композита со сталью показало, что он обладает более высокими механическими характеристиками и меньшим весом. Это позволяет рекомендовать использовать данный композиционный материал для изготовления строительных балок.

Механические характеристики материала на основе полиэстера, содержащего стекловолокно в соотношении 1/1, лучше, чем у стали (кроме прочности на разрыв) (таблица 1).

 $\it Taблица~1$ — Сравнение результатов механических испытаний стальных образцов и образцов из композиционного материала с содержанием стекловолокна 50 %

Механические испытания	Образцы стали марки А36	Образцы из композиционных материалов
Прочность на разрыв, МПа	400	175,4
Ударопрочность, Дж/мм ²	0,61	1,56
Упругая деформация, %	0,11	2,71
Твердость HV	135,5	38

Таким образом:

- изучение свойств композитного материала с различным содержанием стекловолокна позволит определить оптимальный состав для достижения наиболее высоких характеристик;
- использование композитного материала для изготовления строительных балок позволит снизить вес конструкции без ущерба для прочности;
- проведение дополнительных тестов на длительную стойкость и устойчивость к внешним воздействиям поможет подтвердить надежность и долговечность композитных материалов;
- дальнейшие исследования по оптимизации процесса производства композитных материалов позволят снизить затраты и улучшить качество конечного изделия.

Выводы. В процессе исследования выявлено, что введение стекловолокна в композитный материал улучшает механические свойства.

Оптимальный состав с различным содержанием стекловолокна позволяет повысить прочность, жесткость и устойчивость к износу [5–7].

Применение композитного материала для изготовления строительных балок демонстрирует снижение веса конструкции без ущерба для прочности, что является важным фактором для различных промышленных и строительных приложений.

Дополнительные тесты на стойкость и устойчивость к внешним воздействиям позволяют подтвердить надежность и долговечность композитных материалов, что повышает их эффективность в различных условиях эксплуатации [3]. Важно продолжить исследования по оптимизации процесса производства композитных материалов, чтобы снизить затраты и улучшить качество получаемых изделий [4].

Список литературы

- 1 **Гутников, С. И.** Стеклянные волокна: учеб. пособие / С. И. Гутников, Б. И. Лазоряк, А. Н. Селезнев. М.: МГУ, 2010. С. 27–39.
- 2 **Каблов, Е. Н.** Композиты: сегодня и завтра / Е. Н. Каблов // Металлы Евразии. -2015. -№ 1. C. 36–39.
- 3 **Первушин, Ю. С.** Проектирование и прогнозирование механических свойств однонаправленного слоя из композиционного материала : учеб. пособие / Ю. С. Первушин, В. С. Жернаков. Уфа : Уфимск. гос. авиац. техн. ун-т, 2002. 127 с.
- 4 Голубенкова, Л. И. Армированные полимерные материалы / Л. И. Голубенкова; под ред. 3. А. Роговина, П. М. Валецкого, М. Л. Карбера. М. : Мир, 1968.-244 с.
- 5 **Михайлин, Ю. А.** Волокнистые полимерные композиционные материалы в технике. / Ю. А. Михайлин. СПб. : Научные основы и технологии, 2015. 102 с.
- 6 **Кудина, Е. Ф.** Защита газонефтепроводов от внешних повреждений. Ч. 1. Полимерные материалы (обзор) / Е. Ф. Кудина // Нефтяник Полесья. 2013. № 2 (24). С. 88–93.
- 7 Акустические композиты и шумопонижающие конструкции. Ч. 1. Экологически безопасные компоненты и нанонаполнители / С. Н. Бухаров [и др.] // Полимерные материалы и технологии. -2021. Т. 7, № 1. С. 6–22.

IMPROVING THE MECHANICAL PROPERTIES OF REACTOPLASTICS BY ADDING FIBERGLASS

S. YU. KONOVALOV, E. F. KUDINA Belarusian State University of Transport, Gomel

УДК 648.6

ПРАКТИЧЕСКИЕ АСПЕКТЫ ДЕЗИНФЕКЦИИ СООРУЖЕНИЙ ВОДОСНАБЖЕНИЯ С ИСПОЛЬЗОВАНИЕМ ОЗОНА

Н. Г. КОРОБ, М. А. КОМАРОВ, А. В. ПОСПЕЛОВ

Белорусский государственный технологический университет, г. Минск korob@belstu.by

Актуальность. Большинство источников водоснабжения являются естественной средой обитания для микроорганизмов. Значительная их часть уничтожается в процессе водоподготовки, однако небольшое количество может уцелеть. В настоящее время большинство дезинфицирующих средств вклю-