При изготовлении следует:

- 1) совершенствовать технологические процессы изготовления деталей с целью минимизации образования отходов и их повторного использования (в том же производственном цикле);
- 2) максимально унифицировать элементы конструкций, расширять применение стандартных узлов и детадей, развивать принципы агрегатирования и блочно-модульной компоновки основных узлов и механизмов машин, упрощающие их обслуживание и ремонт;
- 3) предусматривать возможность создания производных машин с максимальным использованием конструктивных элементов базовой машины.

При эксплуатации надо:

- 1) руководствоваться требованиями отечественных и международных стандартов по безопасности эксплуатации машин, охране труда и окружающей среды, включая рекомендации интегрированной системы ме-
- 2) активно внедрять методы контроля местоположения и управления рабочим циклом машин с применением спутниковых систем;
- 3) устранять капитальные ремонты и заменять восстановительные ремонты комплектацией машин сменными узлами;
 - 4) упрощать обслуживание машин, конструируя механизмы в виде самообслуживающихся агрегатов.

УДК 621.81

▶ УЭКОЛОГИЧЕСКИЕ АСПЕКТЫ ПРИМЕНЕНИЯ ЭКСПЛУАТАЦИОННЫХ МАТЕРИАЛОВ ДОРОЖНО-СТРОИТЕЛЬНОЙ ТЕХНИКИ

В. А. ДОВГЯЛО, Ю. А. ШЕБЗУХОВ Белорусский государственный университет транспорта, г. Гомель

Современные дорожно-строительные машины оснащены приводами, основным источником энергии которых является топливо на основе нефти (бензин или дизельное топливо). Эти машины перемещаются по дорогам, построенным с использованием строительных материалов (бетон, асфальтобетон, каменные материалы), производимых с высокими энергетическими затратами.

Количество промышленной техники с каждым годом растет, что ведет к увеличению расхода топлива и нагрузок на дороги. Повышение потребления нефти ведет к обеднению ее источников, а разработка новых месторождений требует интенсивного использования дорожных и строительных машин и оборудования, которые расходуют все больше и больше энергии. Кроме того, под воздействием тяжелых и мощных машин интенсивнее происходит разрушение дорог, что в свою очередь вызывает возрастание сопротивлений перемещению движителей по поверхности и требует более высоких мощностей, а значит, и расхода топлива.

Таким образом, повышенные нагрузки на движители и рабочие органы дорожно-строительных машин, а также низкое качество поверхности дорог или разрабатываемых строительных объектов приводят к возникновению основных отрицательных факторов, воздействующих на окружающую среду: шум, выбросы продуктов сгорания топлива и эксплуатационных материалов, пыль, повышенная температура.

Известно, что расход топлива некоторых типов машин может достигать нескольких десятков литров в машино-час. При этом на сгорание 1 кг дизельного топлива (основного вида топлива для дорожностроительной техники) требуется около 11,2 м³ воздуха, а в атмосферу выбрасываются такие газы, как азот, сернистый ангидрит, углекислый газ, а также твердые и жидкие продукты сгорания топлива и масел.

При определении расхода топлива в общем виде учитывается номинальный удельный расход на единицу мощности, собственно мощность и состояние двигателя (степень изношенности, коэффициенты использования по времени и мощности). Степень использования мощности двигателя находится в прямой зависимости от величины сопротивлений перемещению машины или ее рабочим органам.

Удельные сопротивления рабочей среды воздействию на нее зависят не только от природы и характеристик среды, но и от параметров оборудования и правильности выполнения требуемых операций.

Учитывая взаимосвязь между мощностью, необходимой на совершение работы машиной, и расходом эксплуатационных материалов для данной машины, можно выделить основные способы снижения воздействия дорожно-строительной техники на окружающую среду:

- соблюдение параметров рабочих процессов;

- правильный выбор силового нагружения ходового и рабочего оборудования; применение современных конструкторских решений по повышению энергоэффективности приводов;
- рациональный выбор типоразмеров машин в зависимости от требуемых результатов;
- поиск альтернативных экологически более безопасных источников энергии; - соблюдение правил хранения, транспортировки и утилизации как самих материалов, так и их отходов.

Помимо экологических аспектов, перечисленные способы дают существенный ресурсосберегающий эффект, что в совокупности с экологической безопасностью является одним из основных критериев конкурентоспособности техники.

УДК 656.2:502.3(476)

ПРОИЗВОДСТВЕННЫЙ АНАЛИТИЧЕСКИЙ КОНТРОЛЬ НА ПРЕДПРИЯТИЯХ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

И. П. ЖУРОВА

Белорусский государственный университет транспорта, г. Гомель

Согласно ст. 96 Закона Республики Беларусь от 26 ноября 1992 г. № 1982-XII «Об охране окружающей среды», аналитический контроль в области охраны окружающей среды проводится в целях оценки количественных и качественных характеристик выбросов в атмосферный воздух и сбросов в воды загрязняющих веществ, а также определения загрязнения земель (включая почвы) и состава отходов. Производственный аналитический контроль осуществляется юридическими лицами и индивидуальными предпринимателями самостоятельно за счет собственных средств и иных источников финансирования.

Белорусская железная дорога силами самих предприятий с привлечением Научно-исследовательского центра экологической безопасности и энергосбережения на транспорте (НИЦ ЭиЭТ) БелГУТа осуществляет производственный экологический контроль (ПЭК) за выбросами и сбросами загрязняющих веществ в окружающую среду. Одним из первых предприятий Белорусской железной дороги производственный экологический контроль начал проводить ЗАО «Гомельский вагоностроительный завод» вначале силами собственной лаборатории, а с 2005 года – с помощью специалистов физико-химической лаборатории и сектора систем водоснабжения и водоотведения НИЦ ЭиЭТ.

Ежемесячно НИЦ ЭиЭТ осуществляет отбор проб сточных вод предприятия с проведением анализа состава сточных вод по 19 показателям: рН, взвешенные вещества, сухой остаток, нефтепродукты, ХПК, СПАВ, фосфаты, хлориды, сульфаты, нитраты, нитриты, аммиак и ионы аммония, железо, хром, медь, марганец, никель, свинец, цинк. При определении концентрации загрязняющих веществ используются современные методики, внесенные в Реестр методик, выполнения измерений, допущенных к применению при выполнении измерений в области охраны окружающей среды и современное оборудование, которым оснащен НИЦ ЭиЭТ.

Нормирование осуществляется согласно Перечню загрязняющих веществ и их допустимых концентраций в сточных водах при сбросе в коммунальную хозяйственно-фекальную канализацию г. Гомеля. Из 19 определяющих загрязнителей периодически наблюдается превышение по железу, хлоридам, нефтепродуктам и сухому остатку. В таблице 1 приведена усредненная характеристика сточных вод Гомельского вагоностроительного завода.

Таблица 1 - Результаты исследования производственных сточных вод предприятия

В миллиграммах на дециметр кубический

Загрязняющее вещество	Нормативный показатель -	Место отбора проб канализационная насосная станция						
		Водородный показатель, ед.	6,5–9	8,0	8.0	8,6	8,5	8,2
Фосфаты	10	1.8	1.7	2,1	2,6	2,2	2.36	2.36
Сухой остаток	430	320	835	611	458	410	400	478
СПАВ	2,5	0.16	0,5	0,1		1000000	0.15	0.23
Нефтепродукты	2	8,1	8,4	The second secon	0,1	0,1	2.47	3.15
Железо общее	2	3,6	3,4	2,6	3,9	5,7	3.02	1.39
Хлориды	100	254	264	233	1,9	2,2	105	313

Таким образом, главной задачей производственного контроля должно стать доведение концентрации загрязняющих веществ в производственных стоках до уровня ПДК путем устройства локальных модульных очистных сооружений на территории предприятия перед сбросом в городскую сеть водоотведения.

Сотрудниками НИЦ ЭиЭТ совместно с ГУ «Гомельский областной центр гигиены, эпидемиологии и общественного здоровья» также осуществлялся производственный аналитический контроль качественного и количественного состава сточных вод моторвагонного депо Минск, который позволил подготовить материалы для перспективной разработки проектно-сметной документации реконструкции существующих локальных очистных сооружений предприятия. На основании проведенных исследований было определено превышение по 6 загрязняющим веществам, в том числе и по нефтепродуктам.