
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ СЕКТОР (ЦПТЭУ) НКПС

621.132 F52

Выпуск 125

ГЛАВНЕЙШИЕ РЕЗУЛЬТАТЫ ОПЫТОВ НАД ПАРОВОЗАМИ ТИПА ОТИПА ОТИТ

ВТОРОЙ СБОРНИК ИНСТИТУТА ТЯГИ

ТРАНСПЕЧАТЬ НКПС * МОСКВА * 1930

Выпуск 125

621.138

 Γ Л А В Н Е Й Ш И Е РЕЗУЛЬТАТЫ ОПЫТОВ НАД ПАРОВОЗОМ ТИПА 0-4-0 0^4


A-1839.

ВТОРОЙ СБОРНИК ИНСТИТУТА ТЯГИ

Fascicule 125

RÉSULTATS PRINCIPAUX EXPÉ-RIMENTAUX ACQUIS AVEC LA LOCOMOTIVE DU TYPE 0-4-0 O⁴

RECUEIL II DE E'INSTITUT DE TRACTION

MOSCOU - 1930

ОТ ИНСТИТУТА ТЯГИ НАУЧНО-ИССЛЕДОВАТЕЛЬСНОГО СЕКТОРА ЦПТЭУ НКПС

THE REPORT OF THE PROPERTY OF

TO THE PROPERTY OF THE PROPERT

Паровоз серии О^ч переделан (модернизирован) из паровоза серии О^в путем постановки на последнем перегревателя пара. В связи с этим явилась необходимость в изменении у О^ч некоторых основных размеров, а именно:

- 1) Число дымогарных труб со 154 (у O^B) сокращено до 101 и поставлена 21 жаровая труба с шеститрубными пароперегревательными элементами системы Чусова с общей поверхностью нагрева $H_u = 40,11$ m^2 ;
- 2) с правой стороны для цилиндра высокого давления поставлен цилиндрический золотник с внутренним впуском пара и соответственным образом изменено парораспределение, и
- 3) изменено соотношение одновременных отсечек в цилиндрах высокого и низкого давлений путем изменения (по сравнению с О^в) длин некоторых тяг парораспределительных механизмов правой и левой сторон (схема парораспределения). В остальном все размеры паровоза О^ч совершенно тождественны с таковыми для О^в.

Переделанный указанным путем Вологодскими главными мастерскими Северных ж. д. паровоз серии Оч под № 6256, после его предварительного оборудования в депо Сортировочная Московско-Казанской ж. д., был подвергнут испытанию на участке Симская—Кропачево Самаро-Златоустовской жел. дороги.

Испытания эти имели целью выявление тяговой характеристики паровоза, а равно и экономичности его машины в результате введения перегрева пара, каковые данные и приводятся в настоящем издании.

Так как паровоз серии О^ч не подвергался специальным опытам для определения удельного сопротивления его как по-

возки, то кривая w'_{o} на стр. 24 взята из "паспортной книжки" паровоза O^{B} ; кривая эта как понятно с достаточно большой точностью может быть применена и для паровоза серии O^{q} , у которого по сравнению с O^{B} в ходовых частях никаких отличий не имеется.

Тоже самое может быть сказано относительно наибольших и наименьших значений вертикальной реакции колес.

Опытное испытание паровоза производилось под руководством сотрудников Института тяги НИС ЦПТЭУ НКПС— О. Н. Исаакяна и А. И. Долинжева.

Обработка опытного материала выполнялась сотрудниками того же института—В. Г. Головановым, А. А. Горбачевым и М. А. Соболевым под общим руководством О. Н. Исаакяна.

Директор Института тяги

НИС ЦПТЭУ НКПС И. Е. Герман

Список принятых обозначений.

V — скорость поезда в километрах в час;

у — индикаторный коэффициент;

 F_i — индикаторная сила тяги в килограммах;

 F_k — сила тяги на ободе (касательная) в килограммах;

 N_i — индикаторная мощность в л. с.;

N_k — касательная

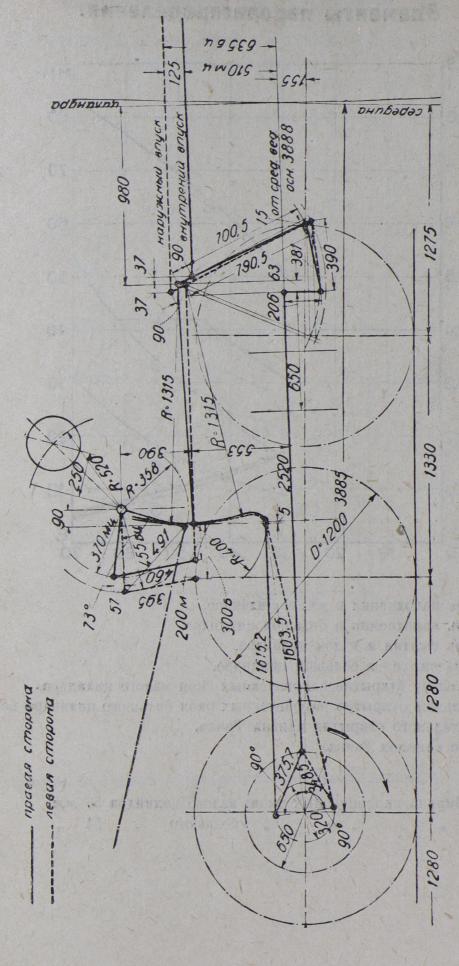
1) 72 31 39

η, — механический коэффициент полезного действия машины;

U — расход пара машиной в час в килограммах;

и — тоже на один ход поршня;

z_м — часовой расход пара по машине в килограммах, отнесенный к 1 кв. метру испаряющей поверхности нагрева.


Главнейшие размеры.

Система машины компаунд
Давление пара в котле
Диаметр малого цилиндра
" большого цилиндра
" штовов
" контрштоков
Ход поршней
Диаметр движущих колес
Расстояние между решетками
Число дымогарных труб
Диаметр дымогарных труб 46/51 мм Число жаровых труб 21
Диаметр жаровых труб
Испаряющая водяная поверхность нагрева:
тонки
дымогарных труб
жаровых труб
Полная испаряющая водяная поверхность на-
грева
Поверхность нагрева перегревателя (газовая). 40,11 "
Общая (наружная) поверхность нагрева 167,05 "
Живое сечение дымогарных труб 0,168 "
" жаровых " 0,257 "
" общее 0,425 "
Диаметр конуса (постоянный) 125 мм
Площадь вполне открытого регулятора 10780 мм²
Площадь колосниковой решетки

Система парораспределения	Гейзингера
Диаметр золотника правого (впуск внутренний)	250 мм
Полная база колес паровоза	
" длина паровоза без тендера	9672 "
Высота оси котла над головкой рельс	2090 "
Сцепной вес паровоза	52,4 m
Вес порожнего паровоза	45,2 ,
" паровоза в рабочем состоянии	52,4 "
Площадь колосниковой решетки	
Испаряющая поверхность нагрева	$\frac{1}{68,6}$ = 0,0146
Площадь колосниковой решетки	
Общая наружная поверхность нагрева с перегревателем	$\frac{1}{90,3}$ = 0,011
Наружная поверхность нагрева топки	$\frac{1}{10,86} = 0,092$
Наружная поверхн. нагрева дымогарных и жаровых труб	10,86
Наружная поверхность нагрева топки	1 =0.068
оощая поверхность нагрева дымогарных и жаровых труо	14,61
Модуль силы тяги паровоза	17 180 кг
Вес порожнего тендера (3-х осного)	
Запасы воды	
Расчетный вес паровоза и тендера 3-х осного	entrance opened
${\rm C}^{-2}/_{3}$ запасов топлива и воды	85 "

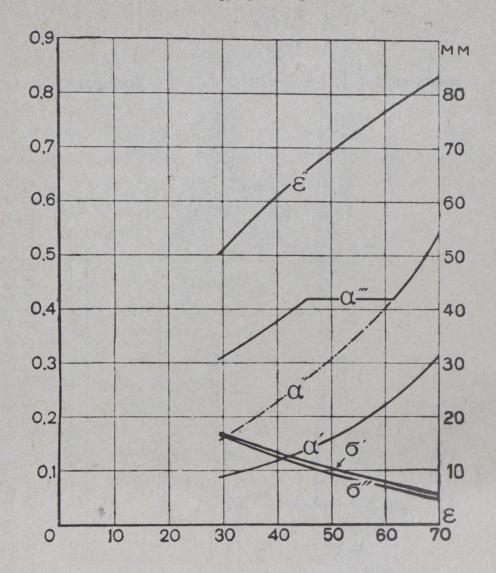

. Julian services permission

Схема парораспределения.

Линейное предварение впуска: малого цилиндра 4 мм, большого цилиндра 4 мм. выпуска: малого цилиндра-8 мм, большого цилиндра-1 мм. Перекрыша впуска: малого цилиндра 33 мм, большого цилиндра 33 мм.

Элементы парораспределения.

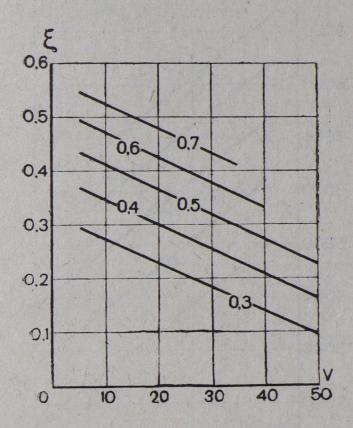
 $[\]varepsilon'$ — степень наполнения в малом цилиндре.

Ширина паровпускных окон: малого цилиндра 57 мм. обольного " 51 "

є" — степень наподнения в большом цилиндре.

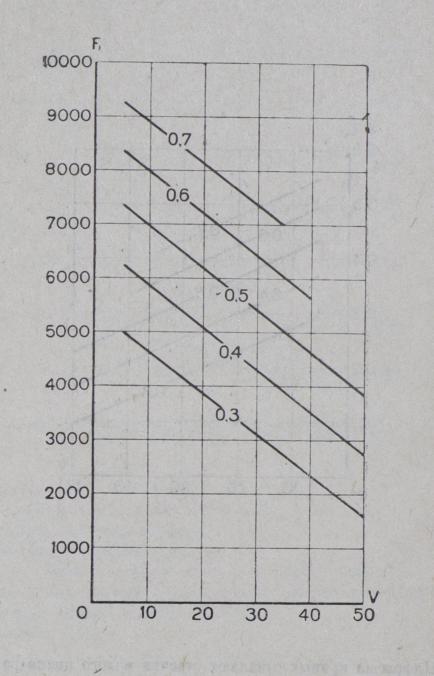
 $[\]sigma'$ — степень сжатия в малом цилиндре.

[—] степень сжатия в большом цициндре.

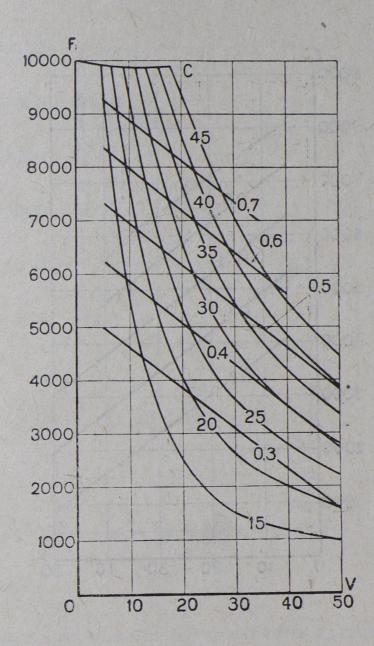

^{« —} наибольшее открытие паровпускных окон малого цилинара.

α" — наибольшее открытие паровпускных окон большого цилиндра без дополнительного открытия канала Трика.

α"- тоже с каналом Трика.

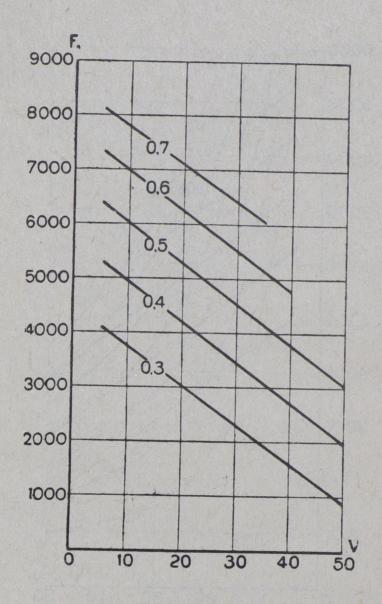

Индикаторный коэффициент

для различных скоростей и отсечек при вполне открытом регуляторе.

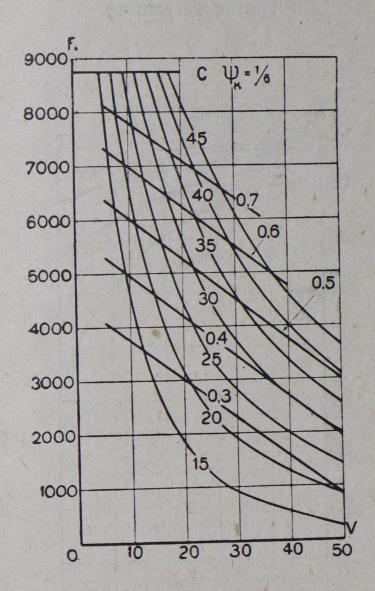

Индикаторная сила тяги

для различных скоростей и отсечек при вполне открытом регуляторе.

Индикаторная сила тяги

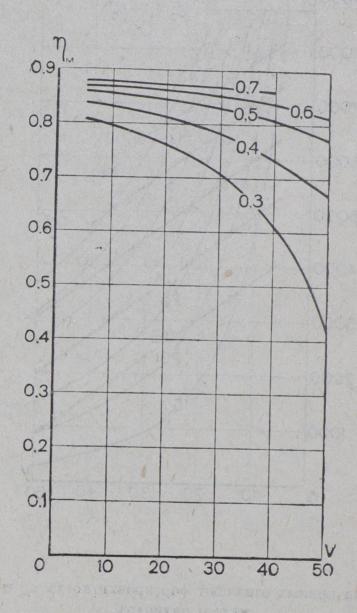

для различных скоростей, отсечек и форсировок котла-

Цифры на кривых означают форсировки котла $z_{\scriptscriptstyle M}$ и отсечки малого цилиндра.

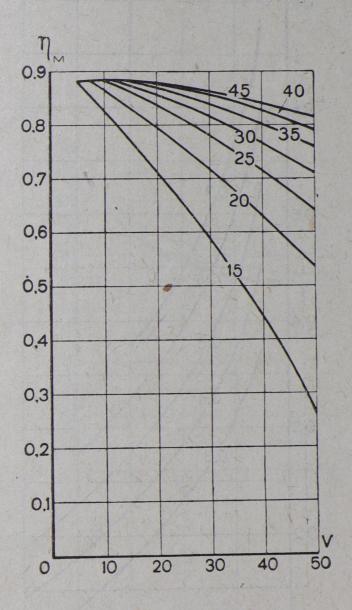

Касательная сила тяги

для различных скоростей и отсечек при вполне открытом регуляторе.

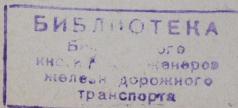
Касательная сила тяги


для различных скоростей, отсечек и форсировок котла.

Цифры на кривых означают форсировки котла z_m и отсечки малого цилиндра.

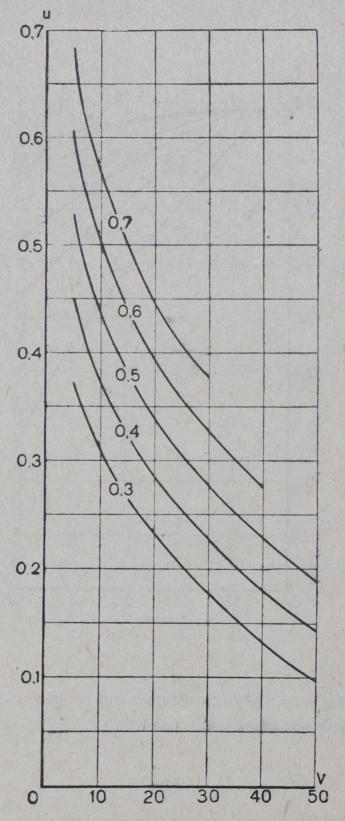

Механический коэффициент полезного действия машины паровоза

для различных скоростей и отсечек при вполне открытом регуляторе.



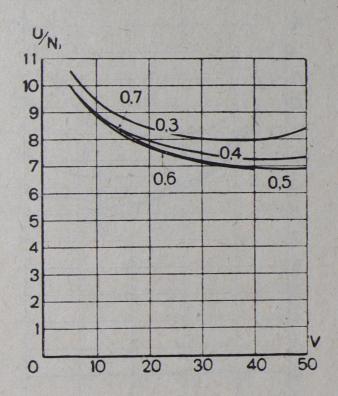
Механический коэффициент полезного действия машины паровоза

для различных скоростей и форсировок котла.

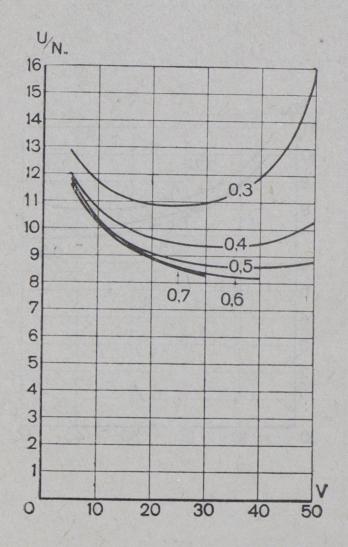


Цифры на кривых означают форсировки котла z_m .

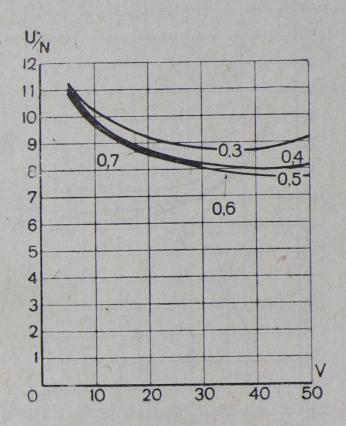
Расход перегретого пара


за один ход порошня для различных скоростей и отсечек при вполне открытом регуляторе.

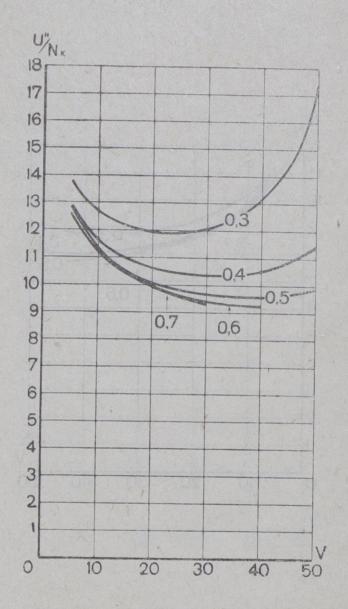
Цифры на кривых означают отсечки малого цилиндра.


Расход перегретого пара на индикаторную силу в час

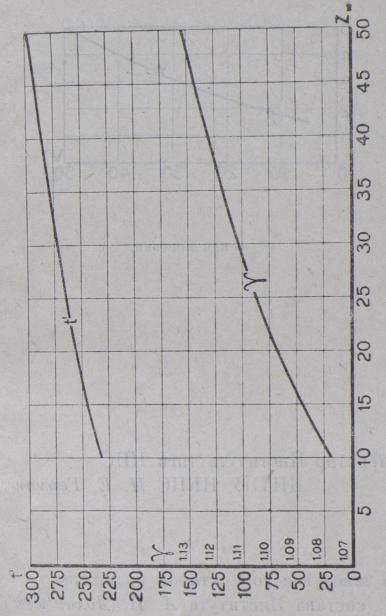
для различных скоростей и отсечев при вполне открытом регуляторе.


Расход перегретого пара на касательную силу в час

для различных скоростей и отсечек при вполне открытом регуляторе.

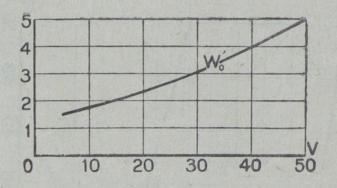

Расход нормального пара на индикаторную силу в час

для различных скоростей и отсечек при вполне открытом регуляторе.



Расход нормального пара на касатальную силу в час

для различных скоростей и отсечек при вполне открытом регуляторе.


SABNCHMOCTS t' M y OT Zk.

кривая у — отношение теплосодержания перегретого пара к теплосодер-Кривая 1 — температура перегретого пара в золотниковой коробке, жанию нормального пара

Удельное сопротивление

паровоза с тендером на прямом и горизонтальном пути.

 w'_o — как повозки.

Директор Института тяги НИС ЦПТЭУ НКПС И. Е. Герман

За заведующего Сектором подвижного состава Института А. И. Долинжев